27 resultados para protein p53 inducible protein phosphatase gene

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular integration of nutrient-and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of kappa B kinase beta. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of kappa B kinase beta phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity. (Endocrinology 153:5261-5274, 2012)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) strains were isolated from nasopharyngeal aspirates collected from 965 children between 2004 and 2005, yielding 424 positive samples. We sequenced the small hydrophobic protein (SH) gene of 117 strains and compared them with other viruses identified worldwide. Phylogenetic analysis showed a low genetic variability among the isolates but allowed us to classify the viruses into different genotypes for both groups, HRSVA and HRSVB. It is also shown that the novel BA-like genotype was well segregated from the others, indicating that the mutations are not limited to the G gene. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohol and tobacco consumption are risk factors for head and neck squamous cell carcinoma (HNSCC). Aldehyde dehydrogenase 2 (ALDH2) and glutathione Stransferase pi 1 (GSTP1) are important enzymes for cellular detoxification and low efficiencies are implicated in cancer. We assessed the potential role of SET protein overexpression, a histone acetylation modulator accumulated in HNSCC, in gene regulation and protein activity of ALDH2 and GSTP1. SET was knocked down in HN13, HN12 and Cal27, and overexpressed in HEK293 cells; ethanol and cisplatin were the chemical agents. Cells with SET overexpression (HEK293/SET, HN13 and HN12) showed lower ALDH2 and GSTP1 mRNA levels and trichostatin A increased them (real-time PCR). Ethanol upregulated GSTP1 and ALDH2 mRNAs, whereas cisplatin upregulated GSTP1 in HEK293 cells. SET-chromatin binding revealed SET interaction with ALDH2 and GSTP1 promoters, specifically via SET NAP domain; ethanol and cisplatin abolished SET binding. ALDH2 and GSTP1 efficiency was assessed by enzymatic and comet assay. A lower ALDH2 activity was associated with greater DNA damage (tail intensity) in HEK293/SET compared with HEK293 cells, whereas HN13/siSET showed ALDH2 activity higher than HN13 cells. HN13/siSET cells showed increased tail intensity. Cisplatin-induced DNA damage response showed negative relationship between SET overexpression and BRCA2 recruitment. SET downregulated repair genes ATM, BRCA1 and CHEK2 and upregulated TP53. Cisplatin-induced cell-cycle arrest occurred in G0/G1 and S in HEK293 cells, whereas HEK293/SET showed G2/M stalling. Overall, cisplatin was more cytotoxic for HN13 than HN13/siSET cells. Our data suggest a role for SET in cellular detoxification, DNA damage response and genome integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H(+) in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil influx and microcirculatory blood flow mediated by NO

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Wilson's disease (WD) is an inborn error of metabolism caused by abnormalities of the copper-transporting protein encoding gene ATP7B. In this study, we examined ATP7B for mutations in a group of patients living in southern Brazil. METHODS: 36 WD subjects were studied and classified according to their clinical and epidemiological data. In 23 subjects the ATP7B gene was analyzed. RESULTS: Fourteen distinct mutations were detected in at least one of the alleles. The c.3207C>A substitution at exon 14 was the most common mutation (allelic frequency=37.1%) followed by the c.3402delC at exon 15 (allelic frequency=11.4%). The mutations c.2018-2030del13 at exon 7 and c.4093InsT at exon 20 are being reported for the first time. CONCLUSION: The c.3207C>A substitution at exon 14, was the most common mutation, with an allelic frequency of 37.1%. This mutation is the most common mutation described in Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMDAR (N-methyl-D-aspartate receptor) is one subtype of ionotrophic glutamate receptor which is extensively distributed in the central nervous system (CNS). In the mammalian CNS, NMDAR serves prominent roles in the pathophysiologic process of cerebral ischemia. This study aimed to investigate the pattern of expression of protein and gene of the excitatory neurotransmitter NMDAR in experimental focal cerebral ischemia and the hole of neuroprotection with hypothermia and ketoprofen. 120 rats were randomly divided into 6 groups (20 animals each): control - no surgery; sham - simulation of surgery; ischemic - focal ischemia for 1 hour, without reperfusion; ischemic + intraischemic hypothermia; ischemic + previous intravenous ketoprofen, and ischemic + hypothermia and ketoprofen. Ten animals from each experimental group were used to establish the volume of infarct. Transient focal cerebral ischemia was obtained in rats by occlusion of the middle cerebral artery with an intraluminal suture. The infarct volume was measured using morphometric analysis of infarct areas defined by triphenyl tetrazolium chloride and the patterns of expression of the protein and gene NMDA were evaluated by immunohistochemistry and quantitative real-time PCR, respectively. Increases in the protein and gene NMDA receptor in the ischemics areas were observed and these increases were reduced by hypothermia and ketoprofen. The increase in the NMDA receptor protein and gene expression observed in the ischemic animals was reduced by neuroprotection (hypothermia and ketoprofen). The NMDA receptor increases in the ischemic area suggests that the NMDA mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, hypothermia and ketoprofen is directly involved with the NMDA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffuse large B-cell lymphoma can be subclassified into at least two molecular subgroups by gene expression profiling: germinal center B-cell like and activated B-cell like diffuse large B-cell lymphoma. Several immunohistological algorithms have been proposed as surrogates to gene expression profiling at the level of protein expression, but their reliability has been an issue of controversy. Furthermore, the proportion of misclassified cases of germinal center B-cell subgroup by immunohistochemistry, in all reported algorithms, is higher compared with germinal center B-cell cases defined by gene expression profiling. We analyzed 424 cases of nodal diffuse large B-cell lymphoma with the panel of markers included in the three previously described algorithms: Hans, Choi, and Tally. To test whether the sensitivity of detecting germinal center B-cell cases could be improved, the germinal center B-cell marker HGAL/GCET2 was also added to all three algorithms. Our results show that the inclusion of HGAL/GCET2 significantly increased the detection of germinal center B-cell cases in all three algorithms (P<0.001). The proportions of germinal center B-cell cases in the original algorithms were 27%, 34%, and 19% for Hans, Choi, and Tally, respectively. In the modified algorithms, with the inclusion of HGAL/GCET2, the frequencies of germinal center B-cell cases were increased to 38%, 48%, and 35%, respectively. Therefore, HGAL/GCET2 protein expression may function as a marker for germinal center B-cell type diffuse large B-cell lymphoma. Consideration should be given to the inclusion of HGAL/GCET2 analysis in algorithms to better predict the cell of origin. These findings bear further validation, from comparison to gene expression profiles and from clinical/therapeutic data. Modern Pathology (2012) 25, 1439-1445; doi: 10.1038/modpathol.2012.119; published online 29 June 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The manifestation of cholelithiasis after bariatric surgery may depend on genetic factors related to lipid metabolism, including apolipoprotein E (APOE) and cholesteryl ester transfer protein (CETP) gene polymorphisms. We investigated the association between APOE HhaI and CETP TaqIB polymorphisms [PCR-RFLP] and occurrence of cholelithiasis over up to 8 months of follow-up after gastroplasty to Roux-en-Y gastric bypass in 220 patients distributed in Group 1 (G1) 114 with cholelithiasis postoperatively and Group 2 (G2) 106 without cholelithiasis, including biochemical and anthropometric profiles analyses. In our series, the allelic and genotypic distributions of CETP TaqIB and APOE HhaI polymorphisms were similar in both groups (P > 0.05). The subgroup analysis evidenced that 54% of the patients from G1, APOE*4 allele carriers compared with APOE*3/3 carriers, presented altered low-density lipoprotein cholesterol (LDL cholesterol) serum levels (P = 0.022) before bariatric surgery. The B1 allele for CETP was associated to more quickly elevation of HDL cholesterol levels just in individuals without cholelitiasis (P < 0.0001). The multivariate logistic regression analysis demonstrates correlation between APOE*4 allele, higher total cholesterol (TC) serum levels and prediposition to cholelitiasis in preoperative period. However, the presence of postoperative cholelithiasis was not associated with altered lipid profile. The CETP TaqIB and APOE HhaI polymorphisms do not seem to have association with gallstones in the late postoperative bariatric surgery, considering that these genetic variants do not differ subgroups of patients who are eligible to routine prophylactic cholecystectomy, at least in Brazilian population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cachexia is a multifaceted syndrome whose aetiology is extremely complex and is directly related to poor patient prognosis and survival. Changes in lipid metabolism in cancer cachexia result in marked reduction of total fat mass, increased lipolysis, total oxidation of fatty acids, hyperlipidaemia, hypertriglyceridaemia, and hypercholesterolaemia. These changes are believed to be induced by inflammatory mediators, such as tumour necrosis factor-alpha (TNF-alpha) and other factors. Attention has recently been drawn to the current theory that cachexia is a chronic inflammatory state, mainly caused by the host's reaction to the tumour. Changes in expression of numerous inflammatory mediators, notably in white adipose tissue (WAT), may trigger several changes in WAT homeostasis. The inhibition of adipocyte differentiation by PPAR gamma is paralleled by the appearance of smaller adipocytes, which may partially account for the inhibitory effect of PPAR gamma on inflammatory gene expression. Furthermore, inflammatory modulation and/or inhibition seems to be dependent on the IKK/NF-kappa B pathway, suggesting that a possible interaction between NF-kappa B and PPAR gamma is required to modulate WAT inflammation induced by cancer cachexia. In this article, current literature on the possible mechanisms of NF-kappa B and PPAR gamma regulation of WAT cells during cancer cachexia are discussed. This review aims to assess the role of a possible interaction between NF-kappa B and PPAR gamma in the setting of cancer cachexia as well as its significant role as a potential modulator of chronic inflammation that could be explored therapeutically. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage ingestion of the yeast Candida albicans requires its recognition by multiple receptors and the activation of diverse signaling programs. Synthesis of the lipid mediator prostaglandin E-2 (PGE(2)) and generation of cyclic adenosine monophosphate (cAMP) also accompany this process. Here, we characterized the mechanisms underlying PGE(2)-mediated inhibition of phagocytosis and filamentous actin (F-actin) polymerization in response to ingestion of C. albicans by alveolar macrophages. PGE(2) suppressed phagocytosis and F-actin formation through the PGE(2) receptors EP2 and EP4, cAMP, and activation of types I and II protein kinase A. Dephosphorylation and activation of the actin depolymerizing factor cofilin-1 were necessary for these inhibitory effects of PGE(2). PGE(2)-dependent activation of cofilin-1 was mediated by the protein phosphatase activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10), with which it directly associated. Because enhanced production of PGE(2) accompanies many immunosuppressed states, the PTEN-dependent pathway described here may contribute to impaired antifungal defenses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Transcription of large numbers of non-coding RNAs originating from intronic regions of human genes has been recently reported, but mechanisms governing their biosynthesis and biological functions are largely unknown. In this work, we evaluated the existence of a common mechanism of transcription regulation shared by protein-coding mRNAs and intronic RNAs by measuring the effect of androgen on the transcriptional profile of a prostate cancer cell line. Results Using a custom-built cDNA microarray enriched in intronic transcribed sequences, we found 39 intronic non-coding RNAs for which levels were significantly regulated by androgen exposure. Orientation-specific reverse transcription-PCR indicated that 10 of the 13 were transcribed in the antisense direction. These transcripts are long (0.5–5 kb), unspliced and apparently do not code for proteins. Interestingly, we found that the relative levels of androgen-regulated intronic transcripts could be correlated with the levels of the corresponding protein-coding gene (asGAS6 and asDNAJC3) or with the alternative usage of exons (asKDELR2 and asITGA6) in the corresponding protein-coding transcripts. Binding of the androgen receptor to a putative regulatory region upstream from asMYO5A, an androgen-regulated antisense intronic transcript, was confirmed by chromatin immunoprecipitation. Conclusion Altogether, these results indicate that at least a fraction of naturally transcribed intronic non-coding RNAs may be regulated by common physiological signals such as hormones, and further corroborate the notion that the intronic complement of the transcriptome play functional roles in the human gene-expression program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The CHD7 (Chromodomain Helicase DNA binding protein 7) gene encodes a member of the chromodomain family of ATP-dependent chromatin remodeling enzymes. Mutations in the CHD7 gene are found in individuals with CHARGE, a syndrome characterized by multiple birth malformations in several tissues. CHD7 was identified as a binding partner of PBAF complex (Polybromo and BRG Associated Factor containing complex) playing a central role in the transcriptional reprogramming process associated to the formation of multipotent migratory neural crest, a transient cell population associated with the genesis of various tissues. CHD7 is a large gene containing 38 annotated exons and spanning 200 kb of genomic sequence. Although genes containing such number of exons are expected to have several alternative transcripts, there are very few evidences of alternative transcripts associated to CHD7 to date indicating that alternative splicing associated to this gene is poorly characterized. Findings Here, we report the cloning and characterization by experimental and computational studies of a novel alternative transcript of the human CHD7 (named CHD7 CRA_e), which lacks most of its coding exons. We confirmed by overexpression of CHD7 CRA_e alternative transcript that it is translated into a protein isoform lacking most of the domains displayed by the canonical isoform. Expression of the CHD7 CRA_e transcript was detected in normal liver, in addition to the DU145 human prostate carcinoma cell line from which it was originally isolated. Conclusions Our findings indicate that the splicing event associated to the CHD7 CRA_e alternative transcript is functional. The characterization of the CHD7 CRA_e novel isoform presented here not only sets the basis for more detailed functional studies of this isoform, but, also, contributes to the alternative splicing annotation of the CHD7 gene and the design of future functional studies aimed at the elucidation of the molecular functions of its gene products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background More than 50 mutations in the UBE3A gene (E6-AP ubiquitin protein ligase gene) have been found in Angelman syndrome patients with no deletion, no uniparental disomy, and no imprinting defect. Case Presentation We here describe a novel UBE3A frameshift mutation in two siblings who have inherited it from their asymptomatic mother. Despite carrying the same UBE3A mutation, the proband shows a more severe phenotype whereas his sister shows a milder phenotype presenting the typical AS features. Conclusions We hypothesized that the mutation Leu125Stop causes both severe and milder phenotypes. Potential mechanisms include: i) maybe the proband has an additional problem (genetic or environmental) besides the UBE3A mutation; ii) since the two siblings have different fathers, the UBE3A mutation is interacting with a different genetic variant in the proband that, by itself, does not cause problems but in combination with the UBE3A mutation causes the severe phenotype; iii) this UBE3A mutation alone can cause either typical AS or the severe clinical picture seen in the proband.