11 resultados para polymer, ion conducivity, lithium ion conductors, secondary lithium ion batteries, proton conductors, PEM-fuel cells (PEMFC)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer films of carboxymethylcellulose (CMC), a polyanion, and bromide salts of poly(4-vinylpyridine) quaternized with linear aliphatic chains of 2 (ethyl) and 5 (pentyl) carbon atoms, coded as QPVP-C2 and QPVP-C5, respectively, were fabricated by layer-by-layer (LbL) self-assembly onto Si/SiO2 wafers (hydrophilic substrate) or polystyrene, PS, films (hydrophobic substrate). The films were characterized by means of ex situ and in situ ellipsometry, atomic force microscopy (AFM), contact angle measurements and sum frequency generation vibrational spectroscopy (SFG). Antimicrobial tests were used to assess the exposure of pyridinium moieties to the aqueous medium. In situ ellipsometry indicated that for Si/SiO2 the chains were more expanded than the PS films and both substrates systems composed of QPVP-C5 were thicker than those with QPVP-C2. For dried layers, the alkyl side group size had a small effect on the thickness evolution, regardless of the substrate. At pH 2 the multilayers showed high resistance, evidencing that the build-up is driven not only by cooperative polymer-polymer ion pairing, but also by hydrophobic interactions between the alkyl side chains. The LbL films became irregular as the number of depositions increased. After the last deposition, the wettability of QPVP-C2 or QPVP-C5 terminated systems on the Si/SiO2 wafers and PS films were similar, except for QPVP-C2 on Si/SiO2 wafers. Unlike the morphology observed for LbL films on Si/SiO2 wafers, PS induced the formation of porous structures. SFG showed that in air the molecular orientation of pyridinium groups in multilayers with QPVP-C5 was stronger than in those containing QPVP-C2. The exposure of pyridinium moieties to the aqueous medium was more pronounced when the LbL were assembled on Si/SiO2 wafers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated Arthrobacter atrocyaneus (R1AF57) as producer of oxidoreductases for oxidative kinetic resolution of racemic secondary alcohols via oxidation reaction. This bacterium was isolated from Amazon soil samples using medium enriched with (RS)-1-(4-methylphenyl)ethanol as a carbon source. The kinetic resolution of several secondary alcohols through enantioselective oxidation mediated by resting cells and growing cells of A. atrocyaneus was efficiently achieved for the most alcohols. In general, it was possible to obtain only the (S)-enantiomer from (RS)-1-arylethanols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct borohydride fuel cells (DBFCs) are attractive energy generators for powering portable electronic devices, mainly due to their high energy density and number of electrons per borohydride ion. However, the lack of a highly efficient electrocatalyst for the borohydride oxidation reaction limits the performance of these devices. The most commonly studied electrocatalysts for this reaction are composed of gold and platinum. Nevertheless, for these metals, the borohydride electrooxidation reaction mechanism (BOR) is not completely understood, and the total oxidation reaction, involving eight electrons per BH4- species, competes with parallel reactions, with a lower number of exchanged electrons and/or with heterogeneous chemical hydrolysis. Considering the above-mentioned issues, this work presents recent advances in the knowledge of the BOR pathways on polycrystalline (bulk) Au and Pt electrocatalysts. It presents the studies of the BOR reaction on Au and Pt electrodes using in situ Fourier Transform Infrared Spectroscopy (FUR), and on-line Differential Electrochemical Mass Spectrometry (DEMS). The spectroscopic and spectrometric data provided physical evidence of intermediate species and the formation of H-2 in the course of the BOR as a function of the electrode potential. These results enabled to advance in the knowledge about the BOR pathways on Au and Pt electrocatalysts. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the influence of alkyl side chains on the gas-phase reactivity of 1,4-naphthoquinone derivatives, some 2-hydroxy-1,4-naphthoquinone derivatives have been prepared and studied by electrospray ionization tandem mass spectrometry in combination with computational quantum chemistry calculations. Protonation and deprotonation sites were suggested on the basis of gas-phase basicity, proton affinity, gas-phase acidity (?Gacid), atomic charges and frontier orbital analyses. The nature of the intramolecular interaction as well as of the hydrogen bond in the systems was investigated by the atoms-in-molecules theory and the natural bond orbital analysis. The results were compared with data published for lapachol (2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone). For the protonated molecules, water elimination was verified to occur at lower proportion when compared with side chain elimination, as evidenced in earlier studies on lapachol. The side chain at position C(3) was found to play important roles in the fragmentation mechanisms of these compounds. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nafion membranes series N117 doped with ammonium, at different cation fractions (H+/NH4+), were investigated for ionic transport and water vapor uptake, for several water activities and temperatures. Ammonium cations change both properties of the polymer in a similar manner. Membrane ionic conductivity and water vapor uptake (lambda) decrease as the ammonium concentration increases in the polymer. Ionic transport activation energies are calculated and the transport mechanism of ammonium ions in Nafion is discussed. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.040203jes] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tank experiment was conducted to check if self-potential (SP) signals can be generated when buried organic matter is wire-connected to a near-surface, oxygen-rich, sediment layer. This experiment demonstrated that once wired, there was a flux of electrons (hence an electric current) between the lower and upper layers of the sandbox with the system responding as a large-scale microbial fuel cell (a type of bioelectrochemical system). An electric current was generated by this process in the wire and the SP method was used to monitor the associated electric potential distribution at the top of the tank.. The electric field was controlled by the flux of electrons through the wire, the oxidation of the organic matter, the reduction of oxygen used as a terminal electron acceptor, and the distribution of the DC resistivity in the tank. The current density through the wire was limited by the availability of oxygen and not by the oxidation of the organic matter. This laboratory experiment incorporated key elements of the biogeobattery observed in some organic-rich contaminant plumes. This analogy includes the generation of SP signals associated with a flux of electrons, the capacity of buried organic matter in sustaining anodic reactions, network resistance connecting terminal redox reactions spatially separated in space, and the existence of anodic secondary coupled reactions. A resistivity tomogram of the tank, after almost a year in operation, suggests that oxidative processes triggered by this geobattery can be imaged with this method to determine the radius of influence of the bioelectrochemical system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years, extensive research has been devoted to develop novel materials and structures with high electrochemical performance for intermediate-temperatures solid-oxide fuel cells (IT-SOFCs) electrodes. In recent works, we have investigated the structural and electrochemical properties of La0:6Sr0:4CoO3 (LSCO) and La0:6Sr0:4Co1¡yFeyO3 (LSCFO) nanostructured cathodes, finding that they exhibit excellent electrocatalytic properties for the oxygen reduction reaction [1,2]. These materials were prepared by a pore-wetting technique using polycarbonate porous membranes as templates. Two average pore sizes were used: 200 nm and 800 nm. Our scanning electronic microscopy (SEM) study showed that the lower pore size yielded nanorods, while nanotubes were obtained with the bigger pore size. All the samples were calcined at 1000oC in order to produce materials with the desired perovskite-type crystal structure. In this work, we analyze the oxidation states of Co and Fe and the local atomic order of LSCO and LSCFO nanotubes and nanowires for various compositions. For this pur- pose we performed XANES and EXAFS studies on both Co and Fe K edges. These measurements were carried out at the D08B-XAFS2 beamline of the Brazilian Synchrotron Light Laboratory (LNLS). XANES spectroscopy showed that Co and Fe only change slightly their oxidation state upon Fe addition. Surprisingly, XANES results indicated that the content of oxygen vacancies is low, even though it is well-known that these materials are mixed ionic-electronic conductors. EXAFS results were consistent with those expected according to the rhombohedral crystal structure determined in previous X-ray powder dffraction investigations. [1] M.G. Bellino et al, J. Am. Chem. Soc. 129 (2007) 3066 [2] J.G. Sacanell et al., J. Power Sources 195 (2010) 1786

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconia-ceria solid-solutions are extensively used as promoters for three-way catalysts, which are applied in the control of NOx, CO and hydrocarbons emission from automotive exhausts. In addition, thesematerials can be used as anodes in solid oxide fuel cells (SOFCs) operated with hydrocarbons. There areonly few works on ZrO2-CeO2 ordered mesoporous materials for catalytic applications and for anodes inSOFCs. The interest in these anodes relies on the fact that ZrO2-CeO2materials are mixed ionic/electronic conductors in reducing atmosphere and, therefore, fuel oxidation is produced on its entire surface, while it only occurs in the [anode/electrolyte/gas] interface (triple-phase boundaries) for electronic conductors. In this work, a synthesis method was developed usingZr and Ce chloride precursors, HCl aqueous solution, Pluronic P123 as the structure directing agent, NH4OH to adjust the pH (3-4) and a Teflon autoclave to perform hydrothermal treatment (80ºC/48 hours). The samples were dried and calcined, until 540ºC in N2and 4 hours in air. The X-ray diffraction data showed that powders with higher CeO2 content are formed by a larger fraction of the cubic CeO2 phase, while for a lower CeO2content the major crystalline structure is the tetragonal ZrO2 phase. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)×6H2O. The resulting powder was calcinated in air until 350ºC for 2 hours. Temperature-programmed reduction (TPR) data were collected in order to evaluate the reduction profiles of ZrO2-x%CeO2:Ni samples in H2/Ar atmosphere. Results showed lower reduction temperatures for all ceria content in samples comparing to a NiO standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although electrochemical oxidation of simple organic molecules on metal catalysts is the basic ingredient of fuel cells, which have great technological potential as a renewable source of electrical energy, the detailed reaction mechanisms are in most cases not completely understood. Here, we investigate the ethanol-platinum interface in acidic aqueous solution using infrared-visible sum frequency generation (SFG) spectroscopy and theoretical calculations of vibrational spectra in order to identify the intermediates present during the electro-oxidation of ethanol. The complex vibrational spectrum in the fingerprint region imply on the coexistence of several adsorbates. Based on spectra in ultra-high-vacuum (UHV) and electrochemical environment from the literature and our density functional theory (DFT) calculations of vibrational spectra, new adsorbed intermediates, never before observed with conventional infrared (IR) spectroscopy, are proposed here: g2-acetaldehyde, g2-acetyl, ethylidyne, monodentate acetate, methoxy, tertiary methanol derivative, COH residue, g2-formaldehyde, mono and bidentate formate, CH3 and CH2 residues. In addition, we present new evidences for an ethoxy intermediate, a secondary ethanol derivative and an acetyl species, and we confirm the presence of previously observed adsorbates: a tertiary ethanol derivative, bidentate acetate, and COad. These results indicate that the platinum surface is much more reactive, and the reaction mechanism for ethanol electro-oxidation is considerably more complex than previously considered. This might be also true for many other molecule-catalyst systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PTFE foils were irradiated with different ion beams (Xe, Au and U) with energies up to 1.5 GeV and fluences between 1 x 10(8) and 1 x 10(13) ions/cm(2) at room temperature. The induced modifications in the polymer were analyzed by FTIR, UV-Vis spectroscopy, and XRD. In the FTIR spectra, the CF2 degradation accompanied by the formation of CF3 terminal and side groups were observed. In the UV-Vis spectra, the observed increase in the absorption at UV wavelengths is an indication of polymer carbonization. From XRD, the amorphization of the material was evidenced by the decrease in the intensity of the main diffraction peak. An exponential fit of the intensity of the IR absorption peaks resulted in the following values: 2.9 +/- 0.8; 4.5 +/- 0.9 and 5.6 +/- 0.8 nm for the latent track radius after irradiation with Xe, Au and U beams, respectively. (C) 2011 Elsevier B.V. All rights reserved.