35 resultados para phylogeny, bullfinches, Pyrrhula, molecular genetics, morphology, biogeography

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Neotropical tribe Trimezieae are taxonomically difficult. They are generally characterized by the absence of the features used to delimit their sister group Tigridieae. Delimiting the four genera that make up Trimezieae is also problematic. Previous family-level phylogenetic analyses have not examined the monophyly of the tribe or relationships within it. Reconstructing the phylogeny of Trimezieae will allow us to evaluate the status of the tribe and genera and to examine the suitability of characters traditionally used in their taxonomy. Maximum parsimony and Bayesian phylogenetic analyses are presented for 37 species representing all four genera of Trimezieae. Analyses were based on nrITS sequences and a combined plastid dataset. Ancestral character state reconstructions were used to investigate the evolution of ten morphological characters previously considered taxonomically useful. Analyses of nrITS and plastid datasets strongly support the monophyly of Trimezieae and recover four principal clades with varying levels of support; these clades do not correspond to the currently recognized genera. Relationships within the four clades are not consistently resolved, although the conflicting resolutions are not strongly supported in individual analyses. Ancestral character state reconstructions suggest considerable homoplasy, especially in the floral characters used to delimit Pseudotrimezia. The results strongly support recognition of Trimezieae as a tribe but suggest that both generic- and species-level taxonomy need revision. Further molecular analyses, with increased sampling of taxa and markers, are needed to support any revision. Such analyses will help determine the causes of discordance between the plastid and nuclear data and provide a framework for identifying potential morphological synapomorphies for infra-tribal groups. The results also suggest Trimezieae provide a promising model for evolutionary research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma (Megatrypanum) melophagium is a parasite of sheep transmitted by sheep keds, the sheep-restricted ectoparasite Melophagus ovinus (Diptera: Hippoboscidae). Sheep keds were 100% prevalent in sheep from five organic farms in Croatia, Southeastern Europe, whereas trypanosomes morphologically compatible with T. melophagium were 86% prevalent in the guts of the sheep keds. Multilocus phylogenetic analyses using sequences of small subunit rRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase, spliced leader, and internal transcribed spacer 1 of the rDNA distinguished T. melophagium from all allied trypanosomes from other ruminant species and placed the trypanosome in the subgenus Megatrypanum. Trypanosomes from sheep keds from Croatia and Scotland, the only available isolates for comparison, shared identical sequences. All biologic and phylogenetic inferences support the restriction of T. melophagium to sheep and, especially, to the sheep keds. The comparison of trypanosomes from sheep, cattle, and deer from the same country, which was never achieved before this work, strongly supported the host-restricted specificity of trypanosomes of the subgenus Megatrypanum. Our findings indicate that with the expansion of organic farms, both sheep keds and T. melophagium may re-emerge as parasitic infections of sheep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The color vision of most platyrrhine primates is determined by alleles at the polymorphic X-linked locus coding for the opsin responsible for the middle- to long-wavelength (M/L) cone photopigment. Females who are heterozygous at the locus have trichromatic vision, whereas homozygous females and all males are dichromatic. This study characterized the opsin alleles in a wild population of the socially monogamous platyrrhine monkey Callicebus brunneus (the brown titi monkey), a primate that an earlier study suggests may possess an unusual number of alleles at this locus and thus may be a subject of special interest in the study of primate color vision. Direct sequencing of regions of the M/L opsin gene using feces-, blood-, and saliva-derived DNA obtained from 14 individuals yielded evidence for the presence of three functionally distinct alleles, corresponding to the most common M/L photopigment variants inferred from a physiological study of cone spectral sensitivity in captive Callicebus. Am. J. Primatol. 73:189-196, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have identified the genetic underpinnings of a growing number of diseases through targeted exome sequencing. However, this strategy ignores the large component of the genome that does not code for proteins, but is nonetheless biologically functional. To address the possible involvement of regulatory variation in congenital heart diseases (CHDs), we searched for regulatory mutations impacting the activity of TBX5, a dosage-dependent transcription factor with well-defined roles in the heart and limb development that has been associated with the HoltOram syndrome (hearthand syndrome), a condition that affects 1/100 000 newborns. Using a combination of genomics, bioinformatics and mouse genetic engineering, we scanned approximate to 700 kb of the TBX5 locus in search of cis-regulatory elements. We uncovered three enhancers that collectively recapitulate the endogenous expression pattern of TBX5 in the developing heart. We re-sequenced these enhancer elements in a cohort of non-syndromic patients with isolated atrial and/or ventricular septal defects, the predominant cardiac defects of the HoltOram syndrome, and identified a patient with a homozygous mutation in an enhancer approximate to 90 kb downstream of TBX5. Notably, we demonstrate that this single-base-pair mutation abrogates the ability of the enhancer to drive expression within the heart in vivo using both mouse and zebrafish transgenic models. Given the population-wide frequency of this variant, we estimate that 1/100 000 individuals would be homozygous for this variant, highlighting that a significant number of CHD associated with TBX5 dysfunction might arise from non-coding mutations in TBX5 heart enhancers, effectively decoupling the heart and hand phenotypes of the HoltOram syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the similar to 12-Mb genome of CAT-1, when compared with the reference S228c genome, contains similar to 36,000 homozygous and similar to 30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transposons are abundant components of eukaryotic genomes, and play important role in genome evolution. The knowledge about these elements should contribute to the understanding of their impact on the host genomes. The hAT transposon superfamily is one of the best characterized superfamilies in diverse organisms, nevertheless, a detailed study of these elements was never carried in sugarcane. To address this question we analyzed 32 cDNAs similar to that of hAT superfamily of transposons previously identified in the sugarcane transcriptome. Our results revealed that these hAT-like transposases cluster in one highly homogeneous and other more heterogeneous lineage. We present evidences that support the hypothesis that the highly homogeneous group is a domesticated transposase while the remainder of the lineages are composed of transposon units. The first is common to grasses, clusters significantly with domesticated transposases from Arabidopsis, rice and sorghum and is expressed in different tissues of two sugarcane cultivars analyzed. In contrast, the more heterogeneous group represents at least two transposon lineages. We recovered five genomic versions of one lineage, characterizing a novel transposon family with conserved DDE motif, named SChAT. These results indicate the presence of at least three distinct lineages of hAT-like transposase paralogues in sugarcane genome, including a novel transposon family described in Saccharum and a domesticated transposase. Taken together, these findings permit to follow the diversification of some hAT transposase paralogues in sugarcane, aggregating knowledge about the co-evolution of transposons and their host genomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pompe disease is a genetic disorder resulting from a deficiency of lysosomal acid alpha-glucosidase (GAA) that manifests as a clinical spectrum with regard to symptom severity and rate of progression. In this study, we used microarrays to examine gene expression from the muscle of two cohorts of infantile-onset Pompe patients to identify transcriptional differences that may contribute to the disease phenotype. We found strong similarities among the gene expression profiles generated from biceps and quadriceps, and identified a number of signaling pathways altered in both cohorts. We also found that infantile-onset Pompe patient muscle had a gene expression pattern characteristic of immature or regenerating muscle, and exhibited many transcriptional markers of inflammation, despite having few overt signs of inflammatory infiltrate. Further, we identified genes exhibiting correlation between expression at baseline and response to therapy. This combined dataset can serve as a foundation for biological discovery and biomarker development to improve the treatment of Pompe disease. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern sugarcane cultivars are complex hybrids resulting from crosses among several Saccharum species. Traditional breeding methods have been employed extensively in different countries over the past decades to develop varieties with increased sucrose yield and resistance to pests and diseases. Conventional variety improvement, however, may be limited by the narrow pool of suitable genes. Thus, molecular genetics is seen as a promising tool to assist in the process of developing improved varieties. The SUCEST-FUN Project (http://sucest-fun.org) aims to associate function with sugarcane genes using a variety of tools, in particular those that enable the study of the sugarcane transcriptome. An extensive analysis has been conducted to characterise, phenotypically, sugarcane genotypes with regard to their sucrose content, biomass and drought responses. Through the analysis of different cultivars, genes associated with sucrose content, yield, lignin and drought have been identified. Currently, tools are being developed to determine signalling and regulatory networks in grasses, and to sequence the sugarcane genome, as well as to identify sugarcane promoters. This is being implemented through the SUCEST-FUN (http://sucest-fun.org) and GRASSIUS databases (http://grassius.org), the cloning of sugarcane promoters, the identification of cis-regulatory elements (CRE) using Chromatin Immunoprecipitation-sequencing (ChIP-Seq) and the generation of a comprehensive Signal Transduction and Transcription gene catalogue (SUCAST Catalogue).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the Sao Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Susceptibility to acute lymphoblastic leukemia can be highly influenced by genetic polymorphisms in metabolizing enzyme genes of environmental carcinogens. This study aimed to evaluate the impact of the CYP3A5 and NAT2 metabolizing enzyme polymorphisms on the risk of childhood acute lymphoblastic leukemia. The analysis was conducted on 204 ALL patients and in 364 controls from a Brazilian population, using PCR-RFLP. The CYP3A5*3 polymorphic homozygous genotype was more frequent among ALL patients and the *3 allele variant was significantly associated with increased risk of childhood ALL (OR = 0.29; 95% CI, 0.14-0.60). The homozygous polymorphic genotype for the *6 allele variant was extremely rare and found in only two individuals. The heterozygous frequencies were similar for the ALL group and the control group. No significant differences were observed between the groups analyzed regarding NAT2 variant polymorphisms. None of the polymorphisms analyzed was related to treatment outcome. The results suggest that CYP3A5*3 polymorphism may play an important role in the risk of childhood ALL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of natural killer cells depends on the balance between activating and inhibitory signals coming from their receptors. Among these are the killer cell immunoglobulin-like receptors (KIR) that recognize specific HLA class I allotypes. Here we characterized KIR genetic diversity and their HLA ligands in the population of Curitiba, Parana State (n = 164), and compared it with other worldwide populations. The distribution of 2DL4 alleles was also analyzed. The Curitiba population did not differ significantly from European and Euro-descendant populations, but as an admixed population showed higher genetic diversity. We found 27 KIR profiles, many of them uncommon in European populations, in agreement with the elevated historically recent gene flow in the study population. The frequencies of KIR genes and their respective HLA ligands were distributed independently and none of the analyzed individuals lacked functional KIR-HLA ligand combinations. KIR gene frequencies of 33 worldwide populations were consistent with geographic and ethnic distribution, in agreement with demography being the major factor shaping the observed gene content diversity of the KIR locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Clinical multistage risk assessment associated with electrocardiogram (ECG) and NT-proBNP may be a feasible strategy to screen hypertrophic cardiomyopathy (HCM). We investigated the effectiveness of a screening based on ECG and NT-proBNP in first-degree relatives of patients with HCM. Methods and Results: A total of 106 first-degree relatives were included. All individuals were evaluated by echocardiography, ECG, NT-proBNP, and molecular screening (available for 65 individuals). From the 106 individuals, 36 (34%) had diagnosis confirmed by echocardiography. Using echocardiography as the gold standard, ECG criteria had a sensitivity of 0.71, 0.42, and 0.52 for the Romhilt-Estes, Sokolow-Lyon, and Cornell criteria, respectively. Mean values of NT-ProBNP were higher in affected as compared with nonaffected relatives (26.1 vs. 1290.5, P < .001). The AUC of NT-proBNP was 0.98. Using a cutoff value of 70 pg/mL, we observed a sensitivity of 0.92 and specificity of 0.96. Using molecular genetics as the gold standard, ECG criteria had a sensitivity of 0.67, 0.37, and 0.42 for the Romhilt-Estes, Sokolow-Lyon, and Cornell criteria, respectively. Using a cutoff value of 70 pg/mL, we observed a sensitivity of 0.83 and specificity of 0.98. Conclusion: Values of NT-proBNP above 70 pg/mL can be used to effectively select high-risk first-degree relatives for HCM screening. (J Cardiac Fail 2012;18:564-568)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutations age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same approximate to 123 kb haplotype whose population frequency is 10. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human premature aging disorder associated with neurological and developmental abnormalities, caused by mutations mainly in the CS group B gene (ERCC6). At the molecular level, CS is characterized by a deficiency in the transcription-couple DNA repair pathway. To understand the role of this molecular pathway in a pluripotent cell and the impact of CSB mutation during human cellular development, we generated induced pluripotent stem cells (iPSCs) from CSB skin fibroblasts (CSB-iPSC). Here, we showed that the lack of functional CSB does not represent a barrier to genetic reprogramming. However, iPSCs derived from CSB patients fibroblasts exhibited elevated cell death rate and higher reactive oxygen species (ROS) production. Moreover, these cellular phenotypes were accompanied by an up-regulation of TXNIP and TP53 transcriptional expression. Our findings suggest that CSB modulates cell viability in pluripotent stem cells, regulating the expression of TP53 and TXNIP and ROS production.