11 resultados para parabolic-elliptic equation, inverse problems, factorization method

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct reconstruction algorithm for complex conductivities in W-2,W-infinity(Omega), where Omega is a bounded, simply connected Lipschitz domain in R-2, is presented. The framework is based on the uniqueness proof by Francini (2000 Inverse Problems 6 107-19), but equations relating the Dirichlet-to-Neumann to the scattering transform and the exponentially growing solutions are not present in that work, and are derived here. The algorithm constitutes the first D-bar method for the reconstruction of conductivities and permittivities in two dimensions. Reconstructions of numerically simulated chest phantoms with discontinuities at the organ boundaries are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous work El et al. (2006) [1] exact stable oblique soliton solutions were revealed in two-dimensional nonlinear Schrodinger flow. In this work we show that single soliton solution can be expressed within the Hirota bilinear formalism. An attempt to build two-soliton solutions shows that the system is "close" to integrability provided that the angle between the solitons is small and/or we are in the hypersonic limit. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The present work propounds an inverse method to estimate the heat sources in the transient two-dimensional heat conduction problem in a rectangular domain with convective bounders. The non homogeneous partial differential equation (PDE) is solved using the Integral Transform Method. The test function for the heat generation term is obtained by the chip geometry and thermomechanical cutting. Then the heat generation term is estimated by the conjugated gradient method (CGM) with adjoint problem for parameter estimation. The experimental trials were organized to perform six different conditions to provide heat sources of different intensities. This method was compared with others in the literature and advantages are discussed. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work develops a computational approach for boundary and initial-value problems by using operational matrices, in order to run an evolutive process in a Hilbert space. Besides, upper bounds for errors in the solutions and in their derivatives can be estimated providing accuracy measures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Via variational methods, we study multiplicity of solutions for the problem {-Delta u = lambda b(x)vertical bar u vertical bar(q-2)u + au + g(x, u) in Omega, u - 0 on partial derivative Omega, where a simple example for g( x, u) is |u|(p-2)u; here a, lambda are real parameters, 1 < q < 2 < p <= 2* and b(x) is a function in a suitable space L-sigma. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any lambda > 0, and a total of five nontrivial solutions are obtained when lambda is small and a >= lambda(1). Note that this type of results are valid even in the critical case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many engineering sectors are challenged by multi-objective optimization problems. Even if the idea behind these problems is simple and well established, the implementation of any procedure to solve them is not a trivial task. The use of evolutionary algorithms to find candidate solutions is widespread. Usually they supply a discrete picture of the non-dominated solutions, a Pareto set. Although it is very interesting to know the non-dominated solutions, an additional criterion is needed to select one solution to be deployed. To better support the design process, this paper presents a new method of solving non-linear multi-objective optimization problems by adding a control function that will guide the optimization process over the Pareto set that does not need to be found explicitly. The proposed methodology differs from the classical methods that combine the objective functions in a single scale, and is based on a unique run of non-linear single-objective optimizers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones