6 resultados para panel data model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Resumo:
A literatura argumenta que o Brasil, embora ainda seja o maior exportador mundial de café verde, tem perdido poder neste mercado, pois a concorrência (rivalidade e probabilidade de entrada) imposta por países como a Colômbia e o Vietnã é forte o suficiente para tornar este mercado bastante competitivo. Assim, este artigo avalia o padrão recente de concorrência do mercado mundial de café verde utilizando uma metodologia econométrica mais usualmente empregada em análise antitruste. Para avaliar o comportamento dos consumidores, foram estimadas as elasticidades-preço da demanda mundial de café verde, por tipo de café, usando o modelo de demanda Logit Multinomial Antitruste. Para avaliar o comportamento de equilíbrio de mercado foram realizados testes de instabilidade de share de quantidade por meio de análise de cointegração em painel. Os resultados apontam para aumento da concorrência à variedade de café brasileiro por parte da demanda e manutenção de sharede quantidades como configuração de equilíbrio de mercado.
Resumo:
Modelos de apreçamento de ativos têm sido um tema sob constante investigação em finanças. Desde o capital asset pricing model (CAPM) proposto por Sharpe (1964), tais modelos relacionam, geralmente de maneira linear, a taxa de retorno esperada de um ativo ou carteira de ativos com fatores de risco sistêmico. Esta pesquisa apresenta um teste de um modelo de apreçamento, com dados brasileiros, introduzindo em sua formulação fatores de risco baseados em comomentos estatísticos. O modelo proposto é uma extensão do CAPM original acrescido da coassimetria e da cocurtose entre as taxas de retorno das ações das empresas que compõem a amostra e as taxas de retorno da carteira de mercado. Os efeitos de outras variáveis, como o valor de mercado sobre valor contábil, a alavancagem financeira e um índice de negociabilidade em bolsa, serviram de variáveis de controle. A amostra foi composta de 179 empresas brasileiras não financeiras negociadas na BM&FBovespa e com dados disponíveis entre os anos de 2003 a 2007. A metodologia consistiu em calcular os momentos sistêmicos anuais a partir de taxas de retornos semanais e em seguida testá-los em um modelo de apreçamento, a fim de verificar se há um prêmio pelo risco associado a cada uma dessas medidas de risco. Foi empregada a técnica de análise de dados em painel, estimada pelo método dos momentos generalizado (GMM). O emprego do GMM visa lidar com potenciais problemas de determinação simultânea e endogeneidade nos dados, evitando a ocorrência de viés nas estimações. Os resultados das estimações mostram que a relação das taxas de retorno dos ativos com a covariância e a cocurtose são estatisticamente significantes. Os resultados se mostraram robustos a especificações alternativas do modelo. O artigo contribui para a literatura por apresentar evidências empíricas brasileiras de que há um prêmio pelo risco associado aos momentos sistêmicos.
Resumo:
The primary objective of this paper is to identify the factors that explain Brazilian companies level of voluntary disclosure. Underpinning this work is the Discretionary-based Disclosure theory. The sample is composed of the top 100 largest non-financial companies listed in the Bolsa de Valores de São Paulo (Brazilian Securities, Commodities, and Futures exchange - BOVESPA). Information was gathered from Financial Statements for the years ending in 2006, 2007, and 2008, with the use of content analysis. A disclosure framework based on 27 studies from these years was created, with a total of 92 voluntary items divided into two dimensions: economic (43) and socio-environmental (49). Based on the existing literature, a total of 12 hypotheses were elaborated and tested using a panel data approach. Results evidence that: (a) Sector and Origin of Control are statistically significant in all three models tested: economic, socio-environmental, and total; (b) Profitability is relevant in the economic model and in the total model; (c) Tobin s Q is relevant in the socio-environmental model and in the total disclosure model; (d) Leverage and Auditing Firm are only relevant in the economic disclosure model; (e) Size, Governance, Stock Issuing, Growth Opportunities and Concentration of Control are not statistically significant in any of the three models.
Resumo:
This article investigates the effect of product market liberalisation on employment allowing for interactions between policies and institutions in product and labour markets. Using panel data for OECD countries over the period 19802002, we present evidence that product market deregulation is more effective at the margin when labour market regulation is high. The data also suggest that product market liberalisation may promote employment-enhancing labour market reforms.
Resumo:
Background: In addition to the oncogenic human papillomavirus (HPV), several cofactors are needed in cervical carcinogenesis, but whether the HPV covariates associated with incident i) CIN1 are different from those of incident ii) CIN2 and iii) CIN3 needs further assessment. Objectives: To gain further insights into the true biological differences between CIN1, CIN2 and CIN3, we assessed HPV covariates associated with incident CIN1, CIN2, and CIN3. Study Design and Methods: HPV covariates associated with progression to CIN1, CIN2 and CIN3 were analysed in the combined cohort of the NIS (n = 3,187) and LAMS study (n = 12,114), using competing-risks regression models (in panel data) for baseline HR-HPV-positive women (n = 1,105), who represent a sub-cohort of all 1,865 women prospectively followed-up in these two studies. Results: Altogether, 90 (4.8%), 39 (2.1%) and 14 (1.4%) cases progressed to CIN1, CIN2, and CIN3, respectively. Among these baseline HR-HPV-positive women, the risk profiles of incident GIN I, CIN2 and CIN3 were unique in that completely different HPV covariates were associated with progression to CIN1, CIN2 and CIN3, irrespective which categories (non-progression, CIN1, CIN2, CIN3 or all) were used as competing-risks events in univariate and multivariate models. Conclusions: These data confirm our previous analysis based on multinomial regression models implicating that distinct covariates of HR-HPV are associated with progression to CIN1, CIN2 and CIN3. This emphasises true biological differences between the three grades of GIN, which revisits the concept of combining CIN2 with CIN3 or with CIN1 in histological classification or used as a common end-point, e.g., in HPV vaccine trials.