38 resultados para ovarian regression

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of balanced diets on the maturation of oocytes and the reproductive performance of P. mesopotamicus in cages. A completely random design with 224 fish in 16 cages measuring 5 m(3) was employed for this purpose. The treatments consisted of diets containing 18, 24, 30, and 36% crude protein (CP) provided ad libitum. The external and internal morphological characteristics of the specimens were examined, as well as: the position of the germinal vesicle, the distribution of oocyte diameters, the fertilization and hatching rates, the number of oocytes released, the total number of oocytes, the remaining weight and total weight of the ovaries, the gonadosomatic index, the condition factor (K), and the histology of the oocytes and ovaries post-spawning and during ovarian regression. The diameters of the oocytes collected before the first hormonal application displayed a unimodal distribution for the lowest protein content and a polymodal distribution for the other treatments. A similar situation was seen during spawning. The lowest fertilization and hatching rates were found as a consequence of the treatment with 30% CP (P < 0.05). The greatest hatching rate occurred in the females fed 18% CP. The greatest total oocyte weight was found in the specimens that received between 30 and 36% CP. The lowest K index was found in the females fed 36% CP. In conclusion, a diet containing 18% CP satisfies the reproductive requirements of females adapted to this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new family of survival distributions is presented. It is derived by considering that the latent number of failure causes follows a Poisson distribution and the time for these causes to be activated follows an exponential distribution. Three different activation schemes are also considered. Moreover, we propose the inclusion of covariates in the model formulation in order to study their effect on the expected value of the number of causes and on the failure rate function. Inferential procedure based on the maximum likelihood method is discussed and evaluated via simulation. The developed methodology is illustrated on a real data set on ovarian cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Differentiation between benign and malignant ovarian neoplasms is essential for creating a system for patient referrals. Therefore, the contributions of the tumor markers CA125 and human epididymis protein 4 (HE4) as well as the risk ovarian malignancy algorithm (ROMA) and risk malignancy index (RMI) values were considered individually and in combination to evaluate their utility for establishing this type of patient referral system. METHODS: Patients who had been diagnosed with ovarian masses through imaging analyses (n = 128) were assessed for their expression of the tumor markers CA125 and HE4. The ROMA and RMI values were also determined. The sensitivity and specificity of each parameter were calculated using receiver operating characteristic curves according to the area under the curve (AUC) for each method. RESULTS: The sensitivities associated with the ability of CA125, HE4, ROMA, or RMI to distinguish between malignant versus benign ovarian masses were 70.4%, 79.6%, 74.1%, and 63%, respectively. Among carcinomas, the sensitivities of CA125, HE4, ROMA (pre-and post-menopausal), and RMI were 93.5%, 87.1%, 80%, 95.2%, and 87.1%, respectively. The most accurate numerical values were obtained with RMI, although the four parameters were shown to be statistically equivalent. CONCLUSION: There were no differences in accuracy between CA125, HE4, ROMA, and RMI for differentiating between types of ovarian masses. RMI had the lowest sensitivity but was the most numerically accurate method. HE4 demonstrated the best overall sensitivity for the evaluation of malignant ovarian tumors and the differential diagnosis of endometriosis. All of the parameters demonstrated increased sensitivity when tumors with low malignancy potential were considered low-risk, which may be used as an acceptable assessment method for referring patients to reference centers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study introduces a new regression model developed to estimate the hourly values of diffuse solar radiation at the surface. The model is based on the clearness index and diffuse fraction relationship, and includes the effects of cloud (cloudiness and cloud type), traditional meteorological variables (air temperature, relative humidity and atmospheric pressure observed at the surface) and air pollution (concentration of particulate matter observed at the surface). The new model is capable of predicting hourly values of diffuse solar radiation better than the previously developed ones (R-2 = 0.93 and RMSE = 0.085). A simple version with a large applicability is proposed that takes into consideration cloud effects only (cloudiness and cloud height) and shows a R-2 = 0.92. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activin A is a growth factor, produced by the endometrium, whose actions are modulated by the binding protein follistatin. Both proteins are detectable in the peripheral serum and their concentrations may be increased in women with endometriosis. The present study was designed to evaluate whether serum levels of activin A and follistatin are altered, and therefore have a potential diagnostic value, in women with peritoneal, ovarian and deep infiltrating endometriosis. We performed a multicenter controlled study evaluating simultaneously serum activin A and follistatin concentrations in women with and without endometriosis. Women with endometriosis (n 139) were subdivided into three groups: peritoneal endometriosis (n 28); ovarian endometrioma (n 61) and deep infiltrating endometriosis (n 50). The control group (n 75) consisted of healthy women with regular menstrual cycles. Blood samples were collected from a peripheral vein and assayed for activin A and follistatin using commercially available enzyme immunoassay kits. The ovarian endometrioma group had serum activin A levels significantly higher than healthy controls (0.22 0.01 ng/ml versus 0.17 0.01 ng/ml, P 0.01). None of the endometriosis groups had serum follistatin levels which were significantly altered compared with healthy controls; however, levels found in the endometrioma group (2.34 0.32 ng/ml) were higher than that in the deep endometriosis group (1.50 0.17 ng/ml, P 0.05). The area under the receiver operating characteristic curve of activin A was 0.700 (95 confidence interval: 0.6050.794), while that of follistatin was 0.620 (95 confidence interval: 0.5100.730) for the diagnosis of ovarian endometrioma. The combination of both markers into a duo marker index did not improve significantly their diagnostic accuracy. The present study demonstrated that serum activin A and follistatin are not significantly altered in peritoneal or deep infiltrating endometriosis and have limited diagnostic accuracy in the diagnosis of ovarian endometrioma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Ovarian adenocarcinoma is frequently detected at the late stage, when therapy efficacy is limited and death occurs in up to 50% of the cases. A potential novel treatment for this disease is a monoclonal antibody that recognizes phosphate transporter sodium-dependent phosphate transporter protein 2b (NaPi2b). Materials and Methods: To better understand the expression of this protein in different histologic types of ovarian carcinomas, we immunostained 50 tumor samples with anti-NaPi2b monoclonal antibody MX35 and, in parallel, we assessed the expression of the gene encoding NaPi2b (SCL34A2) by in silico analysis of microarray data. Results: Both approaches detected higher expression of NaPi2b (SCL34A2) in ovarian carcinoma than in normal tissue. Moreover, a comprehensive analysis indicates that SCL34A2 is the only gene of the several phosphate transporters genes whose expression differentiates normal from carcinoma samples, suggesting it might exert a major role in ovarian carcinomas. Immunohistochemical and mRNA expression data have also shown that 2 histologic subtypes of ovarian carcinoma express particularly high levels of NaPi2b: serous and clear cell adenocarcinomas. Serous adenocarcinomas are the most frequent, contrasting with clear cell carcinomas, rare, and with worse prognosis. Conclusion: This identification of subgroups of patients expressing NaPi2b may be important in selecting cohorts who most likely should be included in future clinical trials, as a recently generated humanized version of MX35 has been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of evapotranspiration on a local scale is important information for agricultural and hydrological practices. However, equations to estimate potential evapotranspiration based only on temperature data, which are simple to use, are usually less trustworthy than the Food and Agriculture Organization (FAO)Penman-Monteith standard method. The present work describes two correction procedures for potential evapotranspiration estimates by temperature, making the results more reliable. Initially, the standard FAO-Penman-Monteith method was evaluated with a complete climatologic data set for the period between 2002 and 2006. Then temperature-based estimates by Camargo and Jensen-Haise methods have been adjusted by error autocorrelation evaluated in biweekly and monthly periods. In a second adjustment, simple linear regression was applied. The adjusted equations have been validated with climatic data available for the Year 2001. Both proposed methodologies showed good agreement with the standard method indicating that the methodology can be used for local potential evapotranspiration estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We aimed to investigate the performance of five different trend analysis criteria for the detection of glaucomatous progression and to determine the most frequently and rapidly progressing locations of the visual field. Design: Retrospective cohort. Participants or Samples: Treated glaucoma patients with =8 Swedish Interactive Thresholding Algorithm (SITA)-standard 24-2 visual field tests. Methods: Progression was determined using trend analysis. Five different criteria were used: (A) =1 significantly progressing point; (B) =2 significantly progressing points; (C) =2 progressing points located in the same hemifield; (D) at least two adjacent progressing points located in the same hemifield; (E) =2 progressing points in the same Garway-Heath map sector. Main Outcome Measures: Number of progressing eyes and false-positive results. Results: We included 587 patients. The number of eyes reaching a progression endpoint using each criterion was: A = 300 (51%); B = 212 (36%); C = 194 (33%); D = 170 (29%); and E = 186 (31%) (P = 0.03). The numbers of eyes with positive slopes were: A = 13 (4.3%); B = 3 (1.4%); C = 3 (1.5%); D = 2 (1.1%); and E = 3 (1.6%) (P = 0.06). The global slopes for progressing eyes were more negative in Groups B, C and D than in Group A (P = 0.004). The visual field locations that progressed more often were those in the nasal field adjacent to the horizontal midline. Conclusions: Pointwise linear regression criteria that take into account the retinal nerve fibre layer anatomy enhances the specificity of trend analysis for the detection glaucomatous visual field progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lemonte and Cordeiro [Birnbaum-Saunders nonlinear regression models, Comput. Stat. Data Anal. 53 (2009), pp. 4441-4452] introduced a class of Birnbaum-Saunders (BS) nonlinear regression models potentially useful in lifetime data analysis. We give a general matrix Bartlett correction formula to improve the likelihood ratio (LR) tests in these models. The formula is simple enough to be used analytically to obtain several closed-form expressions in special cases. Our results generalize those in Lemonte et al. [Improved likelihood inference in Birnbaum-Saunders regressions, Comput. Stat. DataAnal. 54 (2010), pp. 1307-1316], which hold only for the BS linear regression models. We consider Monte Carlo simulations to show that the corrected tests work better than the usual LR tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods: Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results: We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions: The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the nutritional context, the supplementation of microminerals in bird food is often made in quantities exceeding those required in the attempt to ensure the proper performance of the animals. The experiments of type dosage x response are very common in the determination of levels of nutrients in optimal food balance and include the use of regression models to achieve this objective. Nevertheless, the regression analysis routine, generally, uses a priori information about a possible relationship between the response variable. The isotonic regression is a method of estimation by least squares that generates estimates which preserves data ordering. In the theory of isotonic regression this information is essential and it is expected to increase fitting efficiency. The objective of this work was to use an isotonic regression methodology, as an alternative way of analyzing data of Zn deposition in tibia of male birds of Hubbard lineage. We considered the models of plateau response of polynomial quadratic and linear exponential forms. In addition to these models, we also proposed the fitting of a logarithmic model to the data and the efficiency of the methodology was evaluated by Monte Carlo simulations, considering different scenarios for the parametric values. The isotonization of the data yielded an improvement in all the fitting quality parameters evaluated. Among the models used, the logarithmic presented estimates of the parameters more consistent with the values reported in literature.