27 resultados para oil production

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of microalgae and cyanobacteria for the production of biofuels and other raw materials is considered a very promising sustainable technology due to the high areal productivity, potential for CO2 fixation and use of non-arable land. The production of oil by microalgae in a large scale plant was studied using emergy analysis. The joint transformity calculated for the base scenario was 1.32E + 5 sej/J, the oil transformity was 3.51E + 5 sej/J, the emergy yield ratio (EYR) was 1.09 and environmental loading ratio was 11.10 and the emergy sustainability index (ESI) was 0.10, highlighting some of the key challenges for the technology such as high energy consumption during harvesting, raw material consumption and high capital and operation costs. Alternatives scenarios and the sensitivity to process improvements were also assessed, helping prioritize further research based on sustainability impact. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Corymbia citriodora is one of the most important forest species in Brazil and the reason is the diversity of its use, because it produces good quality wood and the leaves may be used for essential oil production. Although, there are not many studies about species and the handling effect in the nutritional balance. This study aimed to evaluate the biomass production and nutrient balance in the conventional production of essential oil and wood of Corymbia citriodora with sewage sludge application. The experiment design established was the randomized blocks, with four replicates and two treatments: 1 - fertilization with 10 tons ha(-1) (dry mass) of sewage sludge, supplemented with K and B, and 2 - mineral fertilization. It was evaluated the aerial biomass production, the nutrient export of the leaves, the essential oil and wood production at four years old. The trees that received application of sewage sludge produced 20 % more leaves biomass than the trees with mineral fertilization, resulting in larger oil production. Besides, the trees with sewage sludge application produced 14.2 tons ha(-1) yr(-1) of woody biomass that was 27 % higher than the treatment with mineral fertilization. For both treatments the N balance was negative, but treatment with sewage sludge application (-45 kg ha(-1)) was four times lower than the observed on mineral fertilization treatment (-185 kg ha(-1)). It may be concluded in this paper that the application of sewage sludge benefits the production of leaves biomass, essential oil and wood, besides result better nutritional balance of the Corymbia citriodora production system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of the core-annular flow pattern, where a thin fluid surrounds a very viscous one, has been suggested as an attractive artificial-lift method for heavy oils in the current Brazilian ultra-deepwater production scenario. This paper reports the pressure drop measurements and the core-annular flow observed in a 2 7/8-inch and 300 meter deep pilot-scale well conveying a mixture of heavy crude oil (2000 mPa.s and 950 kg/m3 at 35 C) and water at several combinations of the individual flow rates. The two-phase pressure drop data are compared with those of single-phase oil flow to assess the gains due to water injection. Another issue is the handling of the core-annular flow once it has been established. High-frequency pressure-gradient signals were collected and a treatment based on the Gabor transform together with neural networks is proposed as a promising solution for monitoring and control. The preliminary results are encouraging. The pilot-scale tests, including long-term experiments, were conducted in order to investigate the applicability of using water to transport heavy oils in actual wells. It represents an important step towards the full scale application of the proposed artificial-lift technology. The registered improvements in terms of oil production rate and pressure drop reductions are remarkable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oil industry uses gas separators in production wells as the free gas present in the suction of the pump reduces the pumping efficiency and pump lifetime. Therefore, free gas is one of the most important variables in the design of pumping systems. However, in the literature there is little information on these separators. It is the case of the inverted-shroud gravitational gas separator. It has an annular geometry due to the installation of a cylindrical container in between the well casing and pioduction pipe (tubing). The purpose of the present study is to understand the phenomenology and behavior of inverted-shroud separator. Experimental tests were performed in a 10.5-m-length inclinable glass tube with air and water as working fluids. The water flow rate was in the range of 8.265-26.117 l/min and the average inlet air mass flow rate was 1.1041 kg/h, with inclination angles of 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, 80 degrees and 85 degrees. One of the findings is that the length between the inner annular level and production pipe inlet is one of the most important design parameters and based on that a new criterion for total gas separation is proposed. We also found that the phenomenology of the studied separator is not directly dependent on the gas flow rate, but on the average velocity of the free surface flow generated inside the separator. Maps of efficiency of gas separation were plotted and showed that liquid flow rate, inclination angle and pressure difference between casing and production pipe outlet are the main variables related to the gas separation phenomenon. The new data can be used for the development of design tools aiming to the optimized project of the pumping system for oil production in directional wells. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m(3) ha (1) y(-)1 of ethanol and 4 Mg ha(-1) y(-1) of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradao (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in Sao Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradao, and Degraded Grassland of JSEB was respectively 4, 7.7 and -7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l(-1)) was achieved using soybean oil at 40 g l(-1) and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l(-1) h(-1), and the calculated Y-p/s value was 0.85 g g(-1). Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the physical and chemical characteristics of methyl and ethyl esters (biodiesel) produced by transesterification of pequi oil (Caryocar brasiliensis Camb.) in the presence of potassium hydroxide. The oil extracted from pequi seed comprises 60% of the fruit content. Such characteristics as density, acidity, viscosity, and carbon residue of the biodiesel meet ANP (Brazilian National Petroleum Agency) standards. Our tests demonstrated the feasibility of utilizing pequi oil for biodiesel production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the biopolymer poly-(3-hydroxybutyrate), P[3HB], presents physicochemical properties that make it an alternative material to conventional plastics, its biotechnological production is quite expensive. As carbon substrates contribute greatly to P[3HB] production cost, the utilization of a cheaper carbon substrate and less demanding micro-organisms should decrease its cost. In the present study a 23 factorial experimental design was applied, aiming to evaluate the effects of using hydrolysed corn starch (HCS) and soybean oil (SBO) as carbon substrates, and cheese whey (CW) supplementation in the mineral medium (MM) on the responses, cell dried weigh (DCW), percentage P[3HB] and mass P[3HB] by recombinant Escherichia coli strains JM101 and DH10B, containing the P[3HB] synthase genes from Cupriavidus necator (ex-Ralstonia eutropha). The analysis of effects indicated that the substrates and the supplement and their interactions had positive effect on CDW. Statistically generated equations showed that, at the highest concentrations of HCS, SO and CW, theoretically it should be possible to produce about 2 g L(1) DCW, accumulating 50% P[3HB], in both strains. To complement this study, the strain that presented the best results was cultivated in MM added to HCS, SBO and CW ( in best composition observed) and complex medium (CM) to compare the obtained P[3HB] in terms of physicochemical parameters. The obtained results showed that the P[3HB] production in MM (1.29 g L(-1)) was approximately 20% lower than in CM (1.63 g L(-1)); however, this difference can be compensated by the lower cost of the MM achieved by the use of cheap renewable carbon sources. Moreover, using differential scanning calorimetry and thermogravimetry analyses, it was observed that the polymer produced in MM was the one which presented physicochemical properties (Tg and Tf) that were more similar to those found in the literature for P[3HB].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of the present work was to study nutritive strategies for lessening the CH4 formation associated to ruminant tropical diets. In vitro gas production technique was used for evaluating the effect of tannin-rich plants, essential oils, and biodiesel co-products on CH4 formation in three individual studies and a small chamber system to measure CH4 released by sheep for in vivo studies was developed. Microbial rumen population diversity from in vitro assays was studied using qPCR. In vitro studies with tanniniferous plants, herbal plant essential oils derived from thyme, fennel, ginger, black seed, and Eucalyptus oil (EuO) added to the basal diet and cakes of oleaginous plants (cotton, palm, castor plant, turnip, and lupine), which were included in the basal diet to replace soybean meal, presented significant differences regarding fermentation gas production and CH4 formation. In vivo assays were performed according to the results of the in vitro assays. , when supplemented to a basal diet (Tifton-85 hay sp, corn grain, soybean meal, cotton seed meal, and mineral mixture) fed to adult Santa Ines sheep reduced enteric CH4 emission but the supplementation of the basal diet with EuO did not affect ( > 0.05) methane released. Regarding the microbial studies of rumen population diversity using qPCR with DNA samples collected from the in vitro trials, the results showed shifts in microbial communities of the tannin-rich plants in relation to control plant. This research demonstrated that tannin-rich , essential oil from eucalyptus, and biodiesel co-products either in vitro or in vivo assays showed potential to mitigate CH4 emission in ruminants. The microbial community study suggested that the reduction in CH4 production may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/ 6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/ Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole andmuscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues andmacrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/ 6 mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The screening. biomass growth of lipase-producing fungus isolated from different sources and available at URM (University Recife Mycologia). as well as, the immobilization and utilization of the whole cells for the transesterification of babassu oil were investigated. Rhizopus oryzae (URM 3231, 4692), Mucor circinelloides (URM 4140, 4182) and Penicillium citrinum URM 4216 were considered to be good intracellular lipase producers whereas those from Mucor hiemalis URM 4144 and Mucor piriformis URM 4145 were weaker. Fungi biomass containing high lipase activities was immobilized on different biomass support particles (BSPs) and with the exception of Penicillium citrinum URM 4216 all the other fungi strains exhibited high lipase activity (20-50 Ug(-1)) when immobilized in situ using polyurethane foam particles. Transesterification activities of the immobilized whole cells were evaluated in the ethanolysis reaction with babassu oil and the highest performance was attained by M. circinelloides URM 4182 giving 83.22 +/- 3.68% ester yield in less than 96 h reaction. The biocatalyst operational stability was also assessed and an inactivation profile was found to follow the Arrhenius model, revealing values of 26 days and 2.6 x 10(-2)day(-1), for half-life and a deactivation coefficient, respectively. The purified product (biodiesel) exhibited viscosity (6.63 cSt) close to the value to attend specifications by the ASTM 06751 to be used as biofuel. Results are favorable compared with data already reported in the literature and demonstrated that M. circinelloides URM 4182 whole cells is a cheaper biocatalyst that can be used in the biodiesel synthesis. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid biofuels can be produced from a variety of feedstocks and processes. Ethanol and biodiesel production processes based on conventional raw materials are already commercial, but subject to further improvement and optimization. Biofuels production processes using lignocellulosic feedstocks are still in the demonstration phase and require further R&D to increase efficiency. A primary tool to analyze the efficiency of biofuels production processes from an integrated point of view is offered by exergy analysis. To gain further insight into the performance of biofuels production processes, a simulation tool, which allows analyzing the effect of process variables on the exergy efficiency of stages in which chemical or biochemical reactions take place, were implemented. Feedstocks selected for analysis were parts or products of tropical plants such as the fruit and flower stalk of banana tree, palm oil, and glucose syrups. Results of process simulation, taking into account actual process conditions, showed that the exergy efficiencies of the acid hydrolysis of banana fruit and banana pulp were in the same order (between 50% and 60%), lower than the figure for palm oil transesterification (90%), and higher that the exergy efficiency of the enzymatic hydrolysis of flower stalk (20.3%). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transesterification of palm oil with ethanol catalyzed by Pseudomonas fluorescens lipase immobilized on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA) was performed in a continuous packed-bed reactor (PBR). Two strategies were used for improving the miscibility of the substrates: the addition of the organic solvent tert-butanol and the surfactant Triton X-100. Results were compared to those obtained in a solventless reactor, which displayed a biphasic system that passed through the reactor. Using this system, the ethyl ester yield of 61.6 +/- 1.2% was obtained at steady state. Both Triton X-100 and tert-butanol systems were found to be suitable to promote the miscibility of the starting materials; however, the use of Triton X-100 reduced the yield to levels lower than 20%, because of the enzyme desorption from the support surface, as confirmed by scanning electron microscopy analysis. The best performance was found for the reactor running in the presence of tert-butanol which resulted in a stable operating system and an average yield of 87.6 +/- 2.5%. This strategy also gave high biocatalyst operational stability, revealing a half-life of 48 days and an inactivation constant of 0.6 X 10(-3) h(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the objective to establish the best metabolizable energy (ME) intake for layers, and the best dietary vegetable oil addition level to optimize egg production, an experiment was carried out with 432 30-week-old Hisex Brown layers. Birds were distributed into nine treatments with six replicates of eight birds each according to a 3 x 3 factorial arrangement, consisting of three daily metabolizable energy intake (280, 300 or 320 kcal/bird/day) and three oil levels (0.00; 0.75 and 1.50 g/bird/day). Daily feed intake was limited to 115, 110 and 105 g/bird in order to obtain the desired energy and oil intake in each treatment. The following parameters were evaluated: initial weight, final weight, body weight change, egg production, egg mass, feed conversion ratio per dozen eggs and per egg mass and energy conversion. There was no influence of the treatments on egg production (%) or egg mass (g/bird/day). Final weight and body weight change were significantly affected by increasing energy intake. Feed conversion ratio per egg mass, feed conversion ratio per dozen eggs and energy conversion significantly worsened as a function of the increase in daily energy intake. An energy intake of 280 kcal/bird/day with no addition of dietary oil does not affect layer performance.