41 resultados para nucleus of the solitary tract

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. In conscious or anesthetized rats, moxonidine (2.5 and 5 nmol/50 nl) injected into the commNTS reduced MAP, HR and sSNA. The injection of moxonidine into the commNTS also elicited a reduction of 28% in the activity of sympathoexcitatory vasomotor neurons of the RVLM. To further assess the notion that moxonidine could act in another brainstem area to elicit the antihypertensive effects, a group with electrolytic lesions of the commNTS or sham and with stainless steel guide-cannulas implanted into the 4th V were used. In the sham group, moxonidine (20 nmol/1 μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1 day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osmoregulatory mechanisms can be vulnerable to electrolyte and/or endocrine environmental changes during the perinatal period, differentially programming the developing offspring and affecting them even in adulthood. The aim of this study was to evaluate whether availability of hypertonic sodium solution during the perinatal period may induce a differential programming in adult offspring osmoregulatory mechanisms. With this aim, we studied water and sodium intake after Furosemide-sodium depletion in adult offspring exposed to hypertonic sodium solution from 1 week before mating until postnatal day 28 of the offspring, used as a perinatal manipulation model [PM-Na group]. In these animals, we also identified the cell population groups in brain nuclei activated by Furosemide-sodium depletion treatment, analyzing the spatial patterns of Fos and Fos-vasopressin immunoreactivity. In sodium depleted rats, sodium and water intake were significantly lower in the PM-Na group vs. animals without access to hypertonic sodium solution [PM-Ctrol group]. Interestingly, when comparing the volumes consumed of both solutions in each PM group, our data show the expected significant differences between both solutions ingested in the PM-Ctrol group, which makes an isotonic cocktail: however, in the PM-Na group there were no significant differences in the volumes of both solutions consumed after Furosemide-sodium depletion, and therefore the sodium concentration of total fluid ingested by this group was significantly higher than that in the PM-Ctrol group. With regard to brain Fos immunoreactivity, we observed that Furosemide-sodium depletion in the PM-Na group induced a higher number of activated cells in the subfornical organ, ventral subdivision of the paraventricular nucleus and vasopressinergic neurons of the supraoptic nucleus than in the PM-Ctrol animals. Moreover, along the brainstem, we found a decreased number of sodium depletion-activated cells within the nucleus of the solitary tract of the PM-Na group. Our data indicate that early sodium availability induces a long-term effect on fluid drinking and on the cell activity of brain nuclei involved in the control of hydromineral balance. These results also suggest that availability of a rich source of sodium during the perinatal period may provoke a larger anticipatory response in the offspring, activating the vasopressinergic system and reducing thirst after water and sodium depletion, as a result of central osmosensitive mechanism alterations. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN is the site of the endogenous biological clock that generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity and is responsible for the transmission of non-photic information to the SCN, thus participating in the integration between photic and non-photic stimuli. Both the SCN and IGL receive projections of retinal ganglion cells and the IGL is connected to the SCN through the geniculohypothalamic tract. Little is known about these structures in the primate brain and the pregeniculate nucleus (PGN) has been suggested to be the primate equivalent of the rodent IGL. The aim of this study was to characterize the PGN of a primate, the common marmoset (Callithrix jacchus), and to analyze its retinal afferents. Here, the marmoset PGN was found to be organized into three subsectors based on neuronal size, pattern of retinal projections, and the distribution of neuropeptide Y-, GAD-, serotonin-, enkephalin- and substance P-labeled terminals. This pattern indicates that the marmoset PGN is equivalent to the IGL. This detailed description contributes to the understanding of the circadian timing system in this primate species considering the importance of the IGL within the context of circadian regulation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper characterizes the developmental stages of the testes and vasa deferentia of the Panulirus echinatus Smith, 1869 through comparisons between microscopic findings, macroscopic aspects, and gonadosomatic index (GSR). The lobsters were sampled monthly (November 1999 to October 2000) using seine nets and a total of 1716 males were obtained at Tamandare Bay. Each carapace was cut to allow evaluation of the reproductive organs; the testes and vasa deferentia were dissected, weighed, fixed in Bouin`s solution up to 12 hours and submitted for histological analysis to determine the presence and/or absence of spermatozoa. These measures, along with change in color, size, diameter, development of the spermatophores and the GSR allowed the caracterization of three development stages: immature, intermediate and ripe. In conclusion, the maturity of the testes precedes the maturity of the vasa deferentia. To evaluate if gonadosomatic relation was a good quantitative indicator of the maturity stage, t tests (alpha = 0,05) were used and verified significant difference in the averages of GSR. The statistics corroborated that GSR can be used as indicative of the developmental stages for P. echinatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the cardiovascular effects of the microinjection of L-proline (L-Pro) into the third ventricle (3V) and its peripheral mechanisms. Different doses of L-Pro into the 3V caused dose-related pressor and bradycardiac responses. The pressor response to L-Pro injected into the 3V was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), thus excluding any significant involvement of the sympathetic nervous system. Because the response to the microinjection of L-Pro into the 3V was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 mu g/kg), it is suggested that these cardiovascular responses are mediated by a vasopressin release. The pressor response to the microinjection of L-Pro into the 3V was found to be mediated by circulating vasopressin, so, given that the paraventricular nucleus of the hypothalamus (PVN) is readily accessible from the 3V, we investigated whether the PVN could be a site of action for the L-Pro microinjected in the 3V. The microinjection of L-Pro (0.033 mu moles/0.1 mu l) into the PVN caused cardiovascular responses similar to those of injection of the 3V and were also shown to be mediated by vasopressin release. In conclusion, these results show that the microinjection of L-Pro into the 3V causes pressor and bradycardiac responses that could involve stimulation of the magnocellular cells of the PVN and release of vasopressin into the systemic circulation. Also, because the microinjection of L-Pro into the PVN caused a pressor response, this is the first evidence of cardiovascular effects caused by its injection in a supramedullary structure. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medial amygdaloid nucleus (MeA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the MeA of unanesthetized rats caused pressor and bradycardiac responses, which were mediated by acute vasopressin release into the systemic circulation. In the present study, we tested the possible involvement of magnocellular neurons of the paraventricular (PVN) and/or supraoptic (SON) of the hypothalamus that synthesize vasopressin in the cardiovascular pathway activated by the microinjection of NA into the MeA. Pressor and bradycardiac responses to the microinjection of NA (27 nmol/100 nL) into the MeA were blocked by pretreatment of either the PVN or the SON with cobalt chloride (CoCl2, 1 mM/100 nL), thus indicating that both hypothalamic nuclei mediate the cardiovascular responses evoked by microinjection of NA Into the MeA. Our results suggest that the pressor and bradycardiac response caused by the microinjection of NA into the MeA is mediated by magnocellular neurons in both the PVN and SON. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During exercise, intense brain activity orchestrates an increase in muscle tension. Additionally, there is an increase in cardiac output and ventilation to compensate the increased metabolic demand of muscle activity and to facilitate the removal of CO2 from and the delivery of O-2 to tissues. Here we tested the hypothesis that a subset of pontomedullary and hypothalamic neurons could be activated during dynamic acute exercise. Male Wistar rats (250-350 g) were divided into an exercise group (n = 12) that ran on a treadmill and a no-exercise group (n = 7). Immunohistochemistry of pontomedullary and hypothalamic sections to identify activation (c-Fos expression) of cardiorespiratory areas showed that the no-exercise rats exhibited minimal Fos expression. In contrast, there was intense activation of the nucleus of the solitary tract, the ventrolateral medulla (including the presumed central chemoreceptor neurons in the retrotrapezoid/parafacial region), the lateral parabrachial nucleus, the Kolliker-Fuse region, the perifornical region, which includes the perifornical area and the lateral hypothalamus, the dorsal medial hypothalamus, and the paraventricular nucleus of the hypothalamus after running exercise. Additionally, we observed Fos immunoreactivity in catecholaminergic neurons within the ventrolateral medulla (C1 region) without Fos expression in the A2, A5 and A7 neurons. In summary, we show for the first time that after acute exercise there is an intense activation of brain areas crucial for cardiorespiratory control. Possible involvement of the central command mechanism should be considered. Our results suggest whole brain-specific mobilization to correct and compensate the homeostatic changes produced by acute exercise. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic administration of cannabidiol (CBD) attenuates cardiovascular and behavioral changes induced by re-exposure to a context that had been previously paired with footshocks. Previous results from our group using cFos immunohistochemistry suggested that the bed nucleus of the stria terminalis (BNST) is involved in this effect. The mechanisms of CBD effects are still poorly understood, but could involve 5-HT1A receptor activation. Thus, the present work investigated if CBD administration into the BNST would attenuate the expression of contextual fear conditioning and if this effect would involve the activation of 5-HT1A receptors. Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (six footshocks, 1.5 mA/3 s). Twenty-four hours later freezing and cardiovascular responses (mean arterial pressure and heart rate) to the conditioning box were measured for 10 min. CBD (15, 30 or 60 nmol) or vehicle was administered 10 min before the re-exposure to the aversive context. The second experiment was similar to the first one except that animals received microinjections of the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) 5 min before CBD (30 nmol) treatment. The results showed that CBD (30 and 60 nmol) treatment significantly reduced the freezing and attenuated the cardiovascular responses induced by re-exposure to the aversive context. Moreover, WAY100635 by itself did not change the cardiovascular and behavioral response to context, but blocked the CBD effects. These results suggest that CBD can act in the BNST to attenuate aversive conditioning responses and this effect seems to involve 5-HT1A receptor-mediated neurotransmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies from our group have indicated that the BNST play an important role in baroreflex modulation. However, the involvement of the BNST in the chemoreflex activity is unknown. Thus, in the present study, we investigated the effect of the local bed nucleus of stria terminalis (BNST) neurotransmission inhibition by bilateral microinjections of the non-selective synaptic blocker cobalt chloride (CoCl2) on the cardiovascular responses to chemoreflex activation in rats. For this purpose, chemoreflex was activated with KCN (i.v.) before and after microinjections of CoCl2 into the BNST. Reversible BNST inactivation produced no significant changes in the magnitude and durations of both pressor and bradycardic responses to intravenous KCN infusion. These findings suggesting that BNST neurotransmission have not influence on both sympathoexcitatory and parasympathoexcitatory components of the peripheral chemoreflex activation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing body of evidence indicates that facilitation of serotonin-2C receptor (5-HT2CR)-mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) is involved in anxiety generation. We investigated here whether BLA 5-HT(2C)Rs exert a differential role in the regulation of defensive behaviours related to generalized anxiety (inhibitory avoidance) and panic (escape) disorders. We also evaluated whether activation of BLA 5-HT(2C)Rs accounts for the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine and fluoxetine. Male Wistar rats were tested in the elevated T-maze after intra-BLA injection of the endogenous agonist 5-HT, the 5-HT2CR agonist MK-212 or the 5-HT2CR antagonist SB-242084. This test allows the measurement of inhibitory avoidance acquisition and escape expression. We also investigated whether intra-BLA administration of SB-242084 interferes with the acute anxiogenic effect caused by imipramine and fluoxetine in the Vogel conflict test, and imipramine in the elevated T-maze. While intra-BLA administration of 5-HT and MK-212 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, SB-242084 had the opposite effect. None of these drugs affected escape performance. Intra-BLA injection of a sub-effective dose of SB-242084 fully blocked the anxiogenic effect caused either by the local microinjection of 5-HT or the systemic administration of imipramine and fluoxetine. Our findings indicate that 5-HT(2C)Rs in BLA are selectively involved in the regulation of defensive behaviours associated with generalized anxiety, but not panic. The results also provide the first direct evidence that activation of BLA 5-HT(2C)Rs accounts for the short-term aversive effect of antidepressants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE The bed nucleus of the stria terminalis (BNST) is a limbic structure that is involved in the expression of conditioned contextual fear. Among the numerous neural inputs to the BNST, noradrenergic synaptic terminals are prominent and some evidence suggests an activation of this noradrenergic neurotransmission in the BNST during aversive situations. Here, we have investigated the involvement of the BNST noradrenergic system in the modulation of behavioural and autonomic responses induced by conditioned contextual fear in rats. EXPERIMENTAL APPROACH Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (6 footshocks, 1.5 ma/ 3 s). Twenty-four hours later freezing and autonomic responses (mean arterial pressure, heart rate and cutaneous temperature) to the conditioning box were measured for 10 min. The adrenoceptor antagonists were administered 10 min before the re-exposure to the aversive context. KEY RESULTS L-propranolol, a non-selective beta-adrenoceptor antagonist, and phentolamine, a non-selective a-adrenoceptor antagonist, reduced both freezing and autonomic responses induced by aversive context. Similar results were observed with CGP20712, a selective beta 1-adrenoceptor antagonist, and WB4101, a selective a1-antagonist, but not with ICI118,551, a selective beta 2-adrenoceptor antagonist or RX821002, a selective a2-antagonist. CONCLUSIONS AND IMPLICATIONS These findings support the idea that noradrenergic neurotransmission in the BNST via a1- and beta 1-adrenoceptors is involved in the expression of conditioned contextual fear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used an assembly of electrodes C3 and C4-Cz in order to activate the motor cortical area of the corticobulbar tract to elucidate the motor-evoked potential of the contralateral mentalis muscle. We compared this setup to that of an assembly with electrodes C5 or C6-Cz using a train of electrical pulses and a single electrical pulse. This analysis was made in 23 consecutive patients who underwent several varied surgeries and were prospectively operated on at Santa Paula Hospital between January and June 2011. The results showed that the assembly with C5 or C6-Cz produced a multisynaptic motor-evoked potential in the contralateral mentalis muscle in 86.9 % of the patients, whereas 82.6 % of patients stimulated at points C3 or C4-Cz presented the same response. However, both assemblies showed similar behavior with the use of a single electrical pulse for peripheral contralateral nerve stimulation. We concluded that the C5 or C6-Cz assembly was similar to C3 or C4-Cz in obtaining a multisynaptic response in the contralateral mentalis muscle, although it required less intensive stimulation than the C3 or C4- Cz assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reinforcement omission effect (ROE) has been attributed to both motivational and attentional consequences of surprising reinforcement omission. Recent evidence suggests that the basolateral complex of the amygdala is involved in motivational components related to reinforcement value, whereas the central nucleus of the amygdala is involved in the processing of the attentional consequences of surprise. This study was designed to verify whether the mechanisms involved in the ROE depend on the integrity of either the basolateral amygdala complex or central nucleus of the amygdala. The ROE was evaluated in rats with lesions of either the central nucleus or basolateral complex of the amygdala and trained on a fixed-interval schedule procedure (Experiment 1) and fixed-interval with limited hold signaled schedule procedure (Experiment 2). The results of Experiment 1 showed that sham-operated rats and rats with lesions of either the central nucleus or basolateral area displayed the ROE. In contrast, in Experiment 2, subjects with lesions of the central nucleus or basolateral complex of the amygdala exhibited a smaller ROE compared with sham-operated subjects. Thus, the effects of selective lesions of amygdala subregions on the ROE in rats depended on the training procedure. Furthermore, the absence of differences between the lesioned groups in either experiment did not allow the dissociation of attentional or motivational components of the ROE with functions of specific areas of the amygdala. Thus, results did not show a functional double-dissociation between the central nucleus and basolateral area in the ROE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: This study examines if injection of cobalt chloride (CoCl2) or antagonists of muscarinic cholinergic (atropine), mu(1)-opioid (naloxonazine) or 5-HT1 serotonergic (methiothepin) receptors into the dorsal or ventral portions of the anterior pretectal nucleus (APtN) alters the antinociceptive effects of stimulating the retrosplenial cortex (RSC) in rats. Main method: Changes in the nociceptive threshold were evaluated using the tail flick or incision pain tests in rats that were electrically stimulated at the RSC after the injection of saline, CoCl2 (1 mM, 0.10 mu L) or antagonists into the dorsal or ventral APtN. Key findings: The injection of CoCl2, naloxonazine (5 mu g/0.10 mu L) or methiothepin (3 mu g/0.10 mu L) into the dorsal APtN reduced the stimulation-produced antinociception from the RSC in the rat tail flick test. Reduction of incision pain was observed following stimulation of the RSC after the injection of the same substances into the ventral APtN. The injection of atropine (10 ng/0.10 mu L) or ketanserine (5 mu g/0.10 mu L) into the dorsal or ventral APtN was ineffective against the antinociception resulting from RSC stimulation. Significance: mu(1)-opioid- and 5-HT1-expressing neurons and cell processes in dorsal and ventral APtN are both implicated in the mediation of stimulation-produced antinociception from the RSC in the rat tail flick and incision pain tests, respectively. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the involvement of paraventricular nucleus (PVN) in the changes in mean arterial pressure (MAP) and heart rate (HR) during an orthostatic challenge (head up tilt, HUT). Adult male Wistar rats, instrumented with guide cannulas to PVN and artery and vein catheters were submitted to MAP and HR recording in conscious state and induction of HUT. The HUT induced an increase in MAP and HR and the pretreatment with prazosin and atenolol blocked these effects. After inhibition of neurotransmission with cobalt chloride (1 mM/100 nl) into the PVN the HR parameters did not change, however we observed a decrease in MAP during HUT. Our data suggest the involvement of PVN in the brain circuitry involved in cardiovascular adjustment during orthostatic challenges. (C) 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.