10 resultados para nucleation and growth
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Two growth patterns are recognized in shallow-water ophiuroids: (I) slow growth and early reproductive maturity over a long life span and (2) rapid growth with a short life span. For species with the first pattern, both growth and recruitment would reflect a reproductive pattern with long periods of resting and spawning concentrated in certain months of the year. To evaluate this hypothesis, the recruitment, population dynamics, and growth of the intertidal brittle star Ophionereis reticulata were analyzed from January 2001 to December 2002 at the Baleciro Isthmus on the southeast coast of Brazil. The species shows an annual gametogenic cycle with spawning taking place in summer. Densities varied from 0.46 to 9.46 individuals m(-2). Density variations and seawater temperature were not significantly correlated. The population structure of O. reticulata was polymodal, with at least four co-occurring cohorts. Recruitment events were recorded in March 2001, October 2001, January 2002, and September 2002. As indicated by the asymptote size (D(infinity)=11.47 mm +/- 1.46), growth constant (K=0.42 year(-1)+/- 0.12), and oscillation index (C=0.97 +/- 0.51), the growth pattern of O. reticulata seems to be based on high survivorship of juveniles and adults, where sexual maturity is reached at a small size with rapid growth in the first 2 years of life. A low level of settlement is to be expected based on these data; however, there must be a minimum successful survivorship and development for juveniles and adults. Another explanation for the lack of small individuals (disc diameter <1.0 mm) could be that recruitment is located in a different area and a post-settlement migration might be involved in the maintenance of the population.
Resumo:
Optical and structural properties of planar and channel waveguides based on sol gel Er3+ and Yb3+ co-doped SiO2-ZrO2 are reported. Microstructured channels with high homogeneous surface profile were written onto the surface of multilayered densified films deposited on SiO2/Si substrates by a femtosecond laser etching technique. The densification of the planar waveguides was evaluated from changes in the refractive index and thickness, with full densification being achieved at 900 degrees C after annealing from 23 up to 500 min, depending on the ZrO2 content Crystal nucleation and growth took place together with densification, thereby producing transparent glass ceramic planar waveguides containing rare earth-doped ZrO2 nanocrystals dispersed in a silica-based glassy host Low roughness and crack-free surface as well as high confinement coefficient were achieved for all the compositions. Enhanced NIR luminescence of the Er3+ ions was observed for the Yb3+- codoped planar waveguides, denoting an efficient energy transfer from the Yb3+ to the Er3+ ion. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 mu m day-1, increasing after addition of symbionts to 18.0 mu m day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.
Resumo:
Arthrospira platensis was cultivated in tubular photobioreactor in order to evaluate growth and biomass production at variable photosynthetic photon flux density (PPFD?=?60, 120, and 240?mu mol photons m-2?s-1) and employing three different systems for cell circulation, specifically an airlift, a motor-driven pumping and a pressurized system. The influence of these two independents variables on the maximum cell concentration (Xm), cell productivity (Px), nitrogen-to-cell conversion factor (YX/N), photosynthetic efficiency (PE), and biomass composition (total lipids and proteins), taken as responses, was evaluated by analysis of variance. The statistical analysis revealed that the best combination of responses' mean values (Xm?=?4,055?mg?L-1, Px?=?406?mg?L-1?day-1, YX/N?=?5.07?mg?mg-1, total lipids?=?8.94%, total proteins?=?30.3%, PE?=?2.04%) was obtained at PPFD?=?120?mu mol photons m-2?s-1; therefore, this light intensity should be considered as the most well-suited for A. platensis cultivation in this photobioreactor configuration. The airlift system did not exert any significant positive statistical influence on the responses, which suggests that this traditional cell circulation system could successfully be substituted by the others tested in this work. Biotechnol. Bioeng. 2012; 109:444450. (c) 2011 Wiley Periodicals, Inc.
Resumo:
The recent biomedical applications of natural rubber (NR) latex, mostly in dry membranes, have motivated research into novel, more noble uses of this low-cost biomaterial. In this article, we provide the first report on the fabrication of layer-by-layer (LbL) films of NR alternated with the polyelectrolytes polyethylenimine (PEI) and polyallylamine hydrochloride (PAH). Stable (PAH/NR)n and (PEI/NR)n LbL films displayed similar physicochemical properties, but differed in terms of film morphology according to atomic force microscopy (AFM) and scanning electron microscopy (SEM) data. Most significantly, (PEI/NR)5 LbL films were made of smaller and flattened particles, which were not efficient for the growth and proliferation of normal human fibroblasts (NHF). In contrast, efficient NHF proliferation could be obtained with (PAH/NR)n LbL films, with the fibroblasts exhibiting the expected elongated morphology. Furthermore, cell growth did not occur for cast films of NR, thus demonstrating the suitability of the LbL method for this biologically related application. The differences between the two polyelectrolytes illustrate the importance of the film architecture and morphology, which open the way for exploiting the molecular control inherent in the LbL technique for further applications of NR-containing films. (c) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
The aim of the present study was to estimate genetic parameters for flight speed and its association with growth traits in Nellore beef cattle. The flight speed (FS) of 7,402 yearling animals was measured, using a device composed of a pair of photoelectric cells. Time interval data (s) were converted to speed (m/s) and faster animals were regarded as more reactive. The growth traits analyzed were weaning weight (WW), ADG from weaning to yearling age, and yearling scrotal circumference (SC). The (co)variance components were estimated using REML in a multitrait analysis applying an animal model. The model included random direct additive genetic and residual effects, fixed effects of contemporary groups, age of dam (classes), and age of animal as covariable. For WW, the model also included maternal genetic and permanent environmental random effects. The direct heritability estimate for FS was 0.26 +/- 0.05 and direct heritability estimates for WW, SC, and ADG were 0.30 +/- 0.01, 0.48 +/- 0.02, and 0.19 +/- 0.01, respectively. Estimates of the genetic correlation between FS and the growth traits were -0.12 +/- 0.07 (WW), -0.13 +/- 0.08 (ADG), and -0.11 +/- 0.07 (SC). Although the values were low, these correlations showed that animals with better temperaments (slower FS) tended to present better performance. It is possible to infer that long-term selection for weight and scrotal circumference can promote a positive genetic response in the temperament of animals. Nevertheless, to obtain faster genetic progress in temperament, it would be necessary to perform direct selection for such trait. Flight speed is an easily measured indicator of temperament and can be included as a selection criterion in breeding programs for Nellore cattle.
Resumo:
Objective. The objective of this preliminary study was to evaluate the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs) and growth factors in keratocystic odontogenic tumors (KOTs). Study Design. The expression of MMPs, TIMPs, growth factors, and the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway were assessed by immunohistochemistry in 15 cases of KOT and 4 cases of calcifying cystic odontogenic tumor (CCOT). Results. KOT samples expressed significantly higher amounts of MMPs, TIMPs, growth factors, epidermal growth factor receptor (EGFR), and ERK compared with CCOT samples, with the exception of MMP-2 and TIMP-1. Conclusions. MMP-9, TIMP-2, EGF and transforming growth factor alpha act together and likely regulate the proliferation and aggressiveness of KOT. ERK-1/2 serves as the transducer of signals generated by these proteins, which signal through the common receptor, EGFR. This process may be related to the increased proliferation and aggressiveness observed in KOT. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:487-496)
Resumo:
PURPOSE: Investigate the morphological effects of chronic exposure to tobacco smoke inhalation and alcohol consumption on the lungs and on the growth of rats. METHODS: Sixty male Wistar rats were divided into four groups: control, tobacco, alcohol, tobacco + alcohol, for a period of study 260 days. Morphological analysis was conducted by optical and electron microscopy. Rat growth was investigated by measuring the snout-anus length, body mass index and body weight. RESULTS: The three groups exposed to the drugs presented lower growth and lower weight than the control group. The percentages of alveolitis, bronchiolitis and the mean alveolar diameter were greater, particularly in the groups exposed to tobacco smoke, but were not significantly different from the control group. Electron microscopy revealed more intense apoptotic and degenerative lesions in the smoking group, while degenerative lesions in the lamellar bodies were more intense with the association of both drugs. CONCLUSIONS: This experimental model showed morphological alterations observed by electron microscopy, principally due to tobacco smoke exposure. Alcohol and tobacco hindered the growth of rats, such that tobacco showed a greater effect on body length and alcohol on body weight.
Resumo:
Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 μm day-1, increasing after addition of symbionts to 18.0 μm day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.
Resumo:
There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.