11 resultados para networks in organization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large historiographic tradition has studied the Brazilian state, yet we know relatively little about its internal dynamics and particularities. The role of informal, personal, and unintentional ties has remained underexplored in most policy network studies, mainly because of the pluralist origin of that tradition. It is possible to use network analysis to expand this knowledge by developing mesolevel analysis of those processes. This article proposes an analytical framework for studying networks inside policy communities. This framework considers the stable and resilient patterns that characterize state institutions, especially in contexts of low institutionalization, particularly those found in Latin America and Brazil. The article builds on research on urban policies in Brazil to suggest that networks made of institutional and personal ties structure state organizations internally and insert them,into broader political scenarios. These networks, which I call state fabric, frame politics, influence public policies, and introduce more stability and predictability than the majority of the literature usually considers. They also form a specific power resource-positional power, associated with the positions that political actors occupy-that influences politics inside and around the state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683467]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive learning is an important machine learning approach which is widely employed in artificial neural networks. In this paper, we present a rigorous definition of a new type of competitive learning scheme realized on large-scale networks. The model consists of several particles walking within the network and competing with each other to occupy as many nodes as possible, while attempting to reject intruder particles. The particle's walking rule is composed of a stochastic combination of random and preferential movements. The model has been applied to solve community detection and data clustering problems. Computer simulations reveal that the proposed technique presents high precision of community and cluster detections, as well as low computational complexity. Moreover, we have developed an efficient method for estimating the most likely number of clusters by using an evaluator index that monitors the information generated by the competition process itself. We hope this paper will provide an alternative way to the study of competitive learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The associations between segregation and urban poverty have been intensely scrutinized by the sociology and urban studies literatures. More recently, several studies have emphasized the importance of social networks for living conditions. Yet relatively few studies have tested the precise effects of social networks, and fewer still have focused on the joint effects of residential segregation and social networks on living conditions. This article explores the associations between networks, segregation and some of the most important dimensions of access to goods and services obtained in markets: escaping from social precariousness and obtaining monetary income. It is based on a study of the personal networks of 209 individuals living in situations of poverty in seven locales in the metropolitan area of Sao Paulo. Using network analysis and multivariate techniques, I show that relational settings strongly influence the access individuals have to markets, leading some individuals into worse living conditions and poverty. At the same time, although segregation plays an important role in poverty, its effects tend to be mediated by the networks in which individuals are embedded. Networks in this sense may enhance or mitigate the effects of isolation produced by space.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) is a novel technique of non-invasive brain stimulation which has been used to treat several neuropsychiatric disorders such as major depressive disorder, chronic pain and epilepsy. Recent studies have shown that the therapeutic effects of rTMS are associated with plastic changes in local and distant neural networks. In fact, it has been suggested that rTMS induces long-term potentiation (LTP) and long-term depression (LTD) - like effects. Besides the initial positive clinical results; the effects of rTMS are stilt mixed. Therefore new toots to assess the effects of plasticity non-invasively might be useful to predict its therapeutic effects and design novel therapeutic approaches using rTMS. In this paper we propose that brain-derived neurotrophic factor (BDNF) might be such a tool. Brain-derived neurotrophic factor is a neurotrophin that plays a key role in neuronal survival and synaptic strength, which has also been studied in several neuropsychiatric disorders. There is robust evidence associating BDNF with the LTP/LTD processes, and indeed it has been proposed that BNDF might index an increase or decrease of brain activity - the `yin and yang` BDNF hypothesis. In this article, we review the initial studies combining measurements of BDNF in rTMS clinical trials and discuss the results and potential usefulness of this instrument in the field of rTMS. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapid industrial development and disorganized population growth in huge cities bring about various urban problems due to intense use of physical space on and below the surface. Subsurface problems in metropolitan areas are caused by subway line construction, which often follows the routes of utility networks, such as electric and telephone cables, water and gas pipes, storm sewers, etc. Usually, the main problems are related to damage or destruction of preexisting utilities, often putting human lives at risk. With the purpose of minimizing risks. GPR-profiling with 200 MHz antennae was done at two sites, both located in downtown Sao Paulo, Brazil. The objectives of this work were to map utilities or existing infrastructure in the subsurface in order to orient the construction of the Line 4 (yellow) subway tunnel in Sao Paulo. GPR profiles can detect water pipes, utility networks in the subsurface, and concrete foundation columns or pilings in subsoil up to 2 m depth. In addition. the GPR profiles also provided details of the target shapes in the subsurface. GPR interpretations combined with lithological information from boreholes and trenches opened in the study areas were extremely important in mapping of the correct spatial distribution of buried utilities at these two sites in Sao Paulo. This information improves and updates maps of utility placement, serves as a basis for planning of the geotechnical excavation of the Line 4 (yellow) subway tunnel in Sao Paulo, helps minimize problems related to destruction of preexisting utilities in the subsoil, and avoids risk of dangerous accidents. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria-to-cell size ratio continually decreased in aging mothers over successive generations. However, regardless of the mother's age or mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.