2 resultados para multiple-case study

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment cores are an essential tool for the analysis of the dynamics of mangrove succession. Coring was used to correlate changes in depositional environments and lateral sedimentary facies with discrete stages of forest succession at the Cananeia-Iguape Coastal System in southeastern Brazil. A local level successional pattern was examined based on four core series T1) a sediment bank; T2) a smooth cordgrass Spartina alterniflora bank; T3) an active mangrove progradation fringe dominated by Laguncularia racemosa, and; T4) a mature mangrove forest dominated by Avicennia schaueriana. Cores were macroscopically described in terms of color, texture, sedimentary structure and organic components. The base of all cores exhibited a similar pattern suggesting common vertical progressive changes in depositional conditions and subsequent successional colonization pattern throughout the forest. The progradation zone is an exposed bank, colonized by S. alterniflora. L. racemosa, replaces S. alterniflora as progradation takes place. As the substrate consolidates A. schaueriana replaces L. racemosa and attains the greatest structural development in the mature forest. Cores collected within the A. schaueriana dominated stand contained S. alterniflora fragments near the base, confirming that a smooth cordgrass habitat characterized the establishment and early seral stages. Cores provide a reliable approach to describe local-level successional sequences in dynamic settings subject to drivers operating on multiple temporal and spatial scales where spatial heterogeneity can lead to multiple equilibria and where similar successional end-points may be reached through convergent paths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the reduction reaction of paraquat herbicide was used to obtain analytical signals using electrochemical techniques of differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry. Analytes were prepared with laboratory purified water and natural water samples (from Mogi-Guacu River, SP). The electrochemical techniques were applied to 1.0 mol L-1 Na2SO4 solutions, at pH 5.5, and containing different concentrations of paraquat, in the range of 1 to 10 mu mol L-1, using a gold ultramicroelectrode. 5 replicate experiments were conducted and in each the mean value for peak currents obtained -0.70 V vs. Ag/AgCl yielded excellent linear relationships with pesticide concentrations. The slope values for the calibration plots (method sensitivity) were 4.06 x 10(-3), 1.07 x 10(-2) and 2.95 x 10(-2) A mol(-1) L for purified water by differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry, respectively. For river water samples, the slope values were 2.60 x 10(-3), 1.06 x 10(-2) and 3.35 x 10(-2) A mol(-1) L, respectively, showing a small interference from the natural matrix components in paraquat determinations. The detection limits for paraquat determinations were calculated by two distinct methodologies, i.e., as proposed by IUPAC and a statistical method. The values obtained with multiple square waves voltammetry were 0.002 and 0.12 mu mol L-1, respectively, for pure water electrolytes. The detection limit from IUPAC recommendations, when inserted in the calibration curve equation, an analytical signal (oxidation current) is smaller than the one experimentally observed for the blank solution under the same experimental conditions. This is inconsistent with the definition of detection limit, thus the IUPAC methodology requires further discussion. The same conclusion can be drawn by the analyses of detection limits obtained with the other techniques studied.