18 resultados para mosquito Culicidae
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Mosquitoes are vectors of arboviruses that can cause encephalitis and hemorrhagic fevers in humans. Aedes serratus (Theobald), Aedes scapularis (Rondani) and Psorophora ferox (Von Humboldt) are potential vectors of arboviruses and are abundant in Vale do Ribeira, located in the Atlantic Forest in the southeast of the State of Sao Paulo, Brazil. The objective of this study was to predict the spatial distribution of these mosquitoes and estimate the risk of human exposure to mosquito bites. Results of the analyses show that humans are highly exposed to bites in the municipalities of Cananeia, Iguape and Ilha Comprida. In these localities the incidence of Rocio encephalitis was 2% in the 1970s. Furthermore, Ae. serratus, a recently implicated vector of yellow fever virus in the State of Rio Grande do Sul, should be a target for the entomological surveillance in the southeastern Atlantic Forest. Considering the continental dimensions of Brazil and the inherent difficulties in sampling its vast area, the habitat suitability method used in the study can be an important tool for predicting the distribution of vectors of pathogens.
Resumo:
This study contributes to knowledge of Anopheles species, including vectors of Plasmodium from the western Brazilian Amazon in Porto Velho, Rondonia State. The sampling area has undergone substantial environmental changes as a consequence of agricultural and hydroelectric projects, which have caused intensive deforestation and favored habitats for some mosquito species. The purpose of this study was to diagnose the occurrence of anopheline species from collections in three locations along an electric-power transmission line. Each locality was sampled three times from 2010 to 2011. The principal adult mosquitoes captured in Shannon trap were Anopheles darlingi, An. triannulatus, An. nuneztovari l.s., An. gilesi and An. costai. In addition, larvae were collected in ground breeding sites for Anopheles braziliensis, An. triannulatus, An. darlingi, An. deaneorum, An. marajoara, An. peryassui, An. nuneztovari l.s. and An. oswaldoi-konderi. Anopheles darlingi was the most common mosquito in the region. We discuss Culicidae systematics, fauna distribution, and aspects of malaria in altered habitats of the western Amazon.
Resumo:
Background: The most substantial and best preserved area of Atlantic Forest is within the biogeographical sub-region of Serra do Mar. The topographic complexity of the region creates a diverse array of microclimates, which can affect species distribution and diversity inside the forest. Given that Atlantic Forest includes highly heterogeneous environments, a diverse and medically important Culicidae assemblage, and possible species co-occurrence, we evaluated mosquito assemblages from bromeliad phytotelmata in Serra do Mar (southeastern Brazil). Methods: Larvae and pupae were collected monthly from Nidularium and Vriesea bromeliads between July 2008 and June 2009. Collection sites were divided into landscape categories (lowland, hillslope and hilltop) based on elevation and slope. Correlations between bromeliad mosquito assemblage and environmental variables were assessed using multivariate redundancy analysis. Differences in species diversity between bromeliads within each category of elevation were explored using the Renyi diversity index. Univariate binary logistic regression analyses were used to assess species co-occurrence. Results: A total of 2,024 mosquitoes belonging to 22 species were collected. Landscape categories (pseudo-F value = 1.89, p = 0.04), bromeliad water volume (pseudo-F = 2.99, p = 0.03) and bromeliad fullness (Pseudo-F = 4.47, p < 0.01) influenced mosquito assemblage structure. Renyi diversity index show that lowland possesses the highest diversity indices. The presence of An. homunculus was associated with Cx. ocellatus and the presence of An. cruzii was associated with Cx. neglectus, Cx. inimitabilis fuscatus and Cx. worontzowi. Anopheles cruzii and An. homunculus were taken from the same bromeliad, however, the co-occurrence between those two species was not statistically significant. Conclusions: One of the main findings of our study was that differences in species among mosquito assemblages were influenced by landscape characteristics. The bromeliad factor that influenced mosquito abundance and assemblage structure was fullness. The findings of the current study raise important questions about the role of An. homunculus in the transmission of Plasmodium in Serra do Mar, southeastern Atlantic Forest.
Resumo:
This study contributes to knowledge of Anopheles species, including vectors of Plasmodium from the western Brazilian Amazon in Porto Velho, Rondônia State. The sampling area has undergone substantial environmental changes as a consequence of agricultural and hydroelectric projects, which have caused intensive deforestation and favored habitats for some mosquito species. The purpose of this study was to diagnose the occurrence of anopheline species from collections in three locations along an electric-power transmission line. Each locality was sampled three times from 2010 to 2011. The principal adult mosquitoes captured in Shannon trap were Anopheles darlingi, An. triannulatus, An. nuneztovari l.s., An.gilesi and An. costai. In addition, larvae were collected in ground breeding sites for Anopheles braziliensis, An. triannulatus, An. darlingi, An. deaneorum, An. marajoara, An. peryassui, An. nuneztovari l.s. and An. oswaldoi-konderi. Anopheles darlingi was the most common mosquito in the region. We discuss Culicidae systematics, fauna distribution, and aspects of malaria in altered habitats of the western Amazon.
Resumo:
Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Culex quinquefasciatus is a vector of human pathogens, including filarial nematodes and several viruses. Although its epidemiological relevance is known to vary across geographical regions, an understanding of its population genetic structure is still incipient. In light of this, we evaluated the genetic diversity of Cx. quinquefasciatus and Cx. pipiens x Cx. quinquefasciatus hybrids collected from nine localities in Brazil and one site in Argentina. We used mitochondrial genes cox1 and nd4, along with the coxA and wsp genes of the maternally-inherited Wolbachia endosymbiont. The nd4 fragment was invariant between samples, whilst cox1 exhibited four haplotypes that separated two types of Cx. quinquefasciatus, one clustered in southern Brazil. Low sequence diversity was generally observed, being discussed. Both Brazilian and Argentinian mosquitoes were infected with a single Wolbachia strain. As reported in previous studies with these populations, cox1 and nd4 diversity is not congruent with the population structure revealed by nuclear markers or alar morphology. Future Cx. quinquefasciatus research should, if possible, evaluate mtDNA diversity in light of other markers.
Resumo:
Abstract Background Bacteria associated with insects can have a substantial impact on the biology and life cycle of their host. The checkerboard DNA-DNA hybridization technique is a semi-quantitative technique that has been previously employed in odontology to detect and quantify a variety of bacterial species in dental samples. Here we tested the applicability of the checkerboard DNA-DNA hybridization technique to detect the presence of Aedes aegypti-associated bacterial species in larvae, pupae and adults of A. aegypti. Findings Using the checkerboard DNA-DNA hybridization technique we could detect and estimate the number of four bacterial species in total DNA samples extracted from A. aegypti single whole individuals and midguts. A. aegypti associated bacterial species were also detected in the midgut of four other insect species, Lutzomyia longipalpis, Drosophila melanogaster, Bradysia hygida and Apis mellifera. Conclusions Our results demonstrate that the checkerboard DNA-DNA hybridization technique can be employed to study the microbiota composition of mosquitoes. The method has the sensitivity to detect bacteria in single individuals, as well as in a single organ, and therefore can be employed to evaluate the differences in bacterial counts amongst individuals in a given mosquito population. We suggest that the checkerboard DNA-DNA hybridization technique is a straightforward technique that can be widely used for the characterization of the microbiota in mosquito populations.
Resumo:
Eleven mosquito species, namely Aedes hastatus, Ae. fulvus, Coquillettidia albicosta, Cq. juxtamansonia, Culex aliciae, Cx. delpontei, Cx. oedipus, Cx. pedroi, Mansonia flaveola, Uranotaenia leucoptera, and Wyeomyia oblita, are recorded for the first time from northwestern Argentina. In addition, 3 species, Cx. brethesi, Limatus durhami, and Ur. nataliae, are reported for the first time from Salta Province. These records extend the geographical distribution of these 3 species to Salta Province. This study also extends the geographical distributions of Cq. nigricans, Cx. chidesteri, and Ma. humeralis to Jujuy Province and of Ae. meprai, Ae. milleri, Ae. oligopistus, Cx. brethesi, Cx. fernandezi, and Cx. tatoi to Tucuman Province.
Resumo:
Two new records of Anopheles homunculus in the eastern part of the Atlantic Forest are reported. This species was found for the first time in Barra do Ouro district, Maquine municipality, Rio Grande do Sul state, located in the southern limit of the Atlantic Forest. The 2nd new record was in the Serra Bonita Reserve, Camacan municipality, southeast Bahia state. These records extend the geographical distribution of An. homunculus, suggesting that the species may be widely distributed in coastal areas of the Atlantic Forest. It is hypothesized that the disjunct distribution of the species may be caused by inadequate sampling, and also difficulties in species identification based only on female external characteristics. Species identification was based on morphological characters of the male, larva, and pupa, and corroborated by DNA sequence analyses, employing data from both 2nd internal transcribed spacer of nuclear ribosomal DNA and of mitochondrial cytochrome c oxidase subunit I.
Resumo:
We undertook geometric morphometric analysis of wing venation to assess this character's ability to distinguish Anopheles darlingi Root populations and to test the hypothesis that populations from coastal areas of the Brazilian Atlantic Forest differ from those of the interior Atlantic Forest, Cerrado, and the regions South and North of the Amazon River. Results suggest that populations from the coastal and interior Atlantic Forest are more similar to each other than to any of the other regional populations. Notably, the Cerrado population was more similar to that from north of the Amazon River than to that collected of south of the River. thus showing no correlation with geographical distances. We hypothesize that environmental and ecological factors may affect wing evolution in An. darlingi. Although it is premature to associate environmental and ecological determinants with wing features and evolution of the species, investigations on this field are promising. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Aedes aegypti is the most important vector of dengue viruses in tropical and subtropical regions. Because vaccines are still under development, dengue prevention depends primarily on vector control. Population genetics is a common approach in research involving Ae. aegypti. In the context of medical entomology, wing morphometric analysis has been proposed as a strong and low-cost complementary tool for investigating population structure. Therefore, we comparatively evaluated the genetic and phenotypic variability of population samples of Ae. aegypti from four sampling sites in the metropolitan area of Sao Paulo city, Brazil. The distances between the sites ranged from 7.1 to 50 km. This area, where knowledge on the population genetics of this mosquito is incipient, was chosen due to the thousands of dengue cases registered yearly. The analysed loci were polymorphic, and they revealed population structure (global F-ST = 0.062; p < 0.05) and low levels of gene flow (Nm = 0.47) between the four locations. Principal component and discriminant analyses of wing shape variables (18 landmarks) demonstrated that wing polymorphisms were only slightly more common between populations than within populations. Whereas microsatellites allowed for geographic differentiation, wing geometry failed to distinguish the samples. These data suggest that microevolution in this species may affect genetic and morphological characters to different degrees. In this case, wing shape was not validated as a marker for assessing population structure. According to the interpretation of a previous report, the wing shape of Ae. aegypti does not vary significantly because it is stabilised by selective pressure. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of 'Comprehensive control of Dengue fever under changing climatic conditions'. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named 'DengueTools' to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change. The consortium comprises 12 work packages to address a set of research questions in three areas: Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring. Research area 2: Develop novel strategies to prevent dengue in children. Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change. In this paper, we report on the rationale and specific study objectives of 'DengueTools'. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589 Dengue Tools.
Resumo:
Although the role of regulatory T cells (Tregs) during malaria infection has been studied extensively, such studies have focused exclusively on the role of Treg during the blood stage of infection; little is known about the detailed mechanisms of Tregs and sporozoite deposition in the dermis by mosquito bites. In this paper we show that sporozoites introduced into the skin by mosquito bites increase the mobility of skin Tregs and dendritic cells (DCs). We also show differences in MHC class II and/or C086 expression on skin-resident dendritic cell subtypes and macrophages. From the observed decrease of the number of APCs into draining lymph nodes, suppression of CD28 expression in conventional CD4 T cells, and a low homeostatic proliferation of skin-migrated CD4 T found in nude mice indicate that Tregs may play a fundamental role during the initial phase of malaria parasite inoculation into the mammalian host. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In order to assess the epidemiological potential of the Culicidae species in remaining areas of the Brazilian Atlantic Forest, specimens of this family were collected in wild and anthropic environments. A total of 9,403 adult mosquitoes was collected from May, 2009 to June, 2010. The most prevalent among species collected in the wild environment were Anopheles (Kerteszia) cruzii, the Melanoconion section of Culex (Melanoconion), and Aedes serratus, while the most common in the anthropic site were Coquillettidia chrysonotum/albifera, Culex (Culex) Coronator group, and An. (Ker.) cruzii. Mosquito richness was similar between environments, although the abundance of individuals from different species varied. When comparing diversity patterns between environments, anthropic sites exhibited higher richness and evenness, suggesting that environmental stress increased the number of favorable niches for culicids, promoting diversity. Increased abundance of opportunistic species in the anthropic environment enhances contact with culicids that transmit vector-borne diseases.
Resumo:
Plasmodium malariae is a protozoan parasite that causes malaria in humans and is genetically indistinguishable from Plasmodium brasilianum, a parasite infecting New World monkeys in Central and South America. P. malariae has a wide and patchy global distribution in tropical and subtropical regions, being found in South America, Asia, and Africa. However, little is known regarding the genetics of these parasites and the similarity between them could be because until now there are only a very few genomic sequences available from simian Plasmodium species. This study presents the first molecular epidemiological data for P. malariae and P. brasilianum from Brazil obtained from different hosts and uses them to explore the genetic diversity in relation to geographical origin and hosts. By using microsatellite genotyping, we discovered that of the 14 human samples obtained from areas of the Atlantic forest, 5 different multilocus genotypes were recorded, while in a sample from an infected mosquito from the same region a different haplotype was found. We also analyzed the longitudinal change of circulating plasmodial genetic profile in two untreated non-symptomatic patients during a 12-months interval. The circulating genotypes in the two samples from the same patient presented nearly identical multilocus haplotypes (differing by a single locus). The more frequent haplotype persisted for almost 3 years in the human population. The allele Pm09-299 described previously as a genetic marker for South American P. malariae was not found in our samples. Of the 3 non-human primate samples from the Amazon Region, 3 different multilocus genotypes were recorded indicating a greater diversity among isolates of P. brasilianum compared to P. malariae and thus, P. malariae might in fact derive from P. brasilianum as has been proposed in recent studies. Taken together, our data show that based on the microsatellite data there is a relatively restricted polymorphism of P. malariae parasites as opposed to other geographic locations. (c) 2012 Elsevier B.V. All rights reserved.