9 resultados para mineral data
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The reproductive performance of cattle may be influenced by several factors, but mineral imbalances are crucial in terms of direct effects on reproduction. Several studies have shown that elements such as calcium, copper, iron, magnesium, selenium, and zinc are essential for reproduction and can prevent oxidative stress. However, toxic elements such as lead, nickel, and arsenic can have adverse effects on reproduction. In this paper, we applied a simple and fast method of multi-element analysis to bovine semen samples from Zebu and European classes used in reproduction programs and artificial insemination. Samples were analyzed by inductively coupled plasma spectrometry (ICP-MS) using aqueous medium calibration and the samples were diluted in a proportion of 1:50 in a solution containing 0.01% (vol/vol) Triton X-100 and 0.5% (vol/vol) nitric acid. Rhodium, iridium, and yttrium were used as the internal standards for ICP-MS analysis. To develop a reliable method of tracing the class of bovine semen, we used data mining techniques that make it possible to classify unknown samples after checking the differentiation of known-class samples. Based on the determination of 15 elements in 41 samples of bovine semen, 3 machine-learning tools for classification were applied to determine cattle class. Our results demonstrate the potential of support vector machine (SVM), multilayer perceptron (MLP), and random forest (RF) chemometric tools to identify cattle class. Moreover, the selection tools made it possible to reduce the number of chemical elements needed from 15 to just 8.
Resumo:
Mejillonesite, ideally NaMg(2)(PO(3)OH)(PO(4))(OH)center dot H(5)O(2), is a new mineral approved by the CNMNC (IMA 2010-068). It occurs as isolated crystal aggregates in thin zones in fine-grained opal-zeolite aggregate on the north slope of Cerro Mejillones, Antofagasta, Chile. Closely associated minerals are bobierrite, opal, clinoptilolite-Na, clinoptilolite-K, and gypsum. Mejillonesite forms orthorhombic, prismatic, and elongated thick tabular crystals up to 6 mm long, usually intergrown in radiating aggregates. The dominant form is pinacoid {100}. Prisms {hk0}, {h0l}, and {0kl} are also observed. The crystals are colorless, their streak is white, and the luster is vitreous. The mineral is transparent. It is non-fluorescent under ultraviolet light. Mohs' hardness is 4, tenacity is brittle. Cleavage is perfect on {100}, good on {010} and {001}, and fracture is stepped. The measured density is 2.36(1) g/cm(3); the calculated density is 2.367 g/cm(3). Mejillonesite is biaxial (-), alpha= 1.507(2), beta= 1.531(2), gamma= 1.531(2), 2V(meas) = 15(10)degrees, 2V(calc) = 0 degrees (589 nm). Orientation is X= a, Z= elongation direction. The mineral is non-pleochroic. Dispersion is r> v, medium. The IR spectrum contains characteristic bands of the Zundel cation (H(5)O(2)(+), or H(+)center dot 2H(2)O) and the groups P-OH and OH(-). The chemical composition is (by EDS, H(2)O by the Alimarin method, wt%): Na(2)O 9.19, MgO 26.82, P(2)O(5) 46.87, H(2)O 19, total 101.88. The empirical formula, based on 11 oxygen atoms, is Na(0.93)Mg(2.08)(PO(3)OH)(1.00) (PO(4)) (OH)(0.86) .0.95H(5)O(2) The strongest eight X-ray powder-diffraction lines [d in angstrom(I)(hkl)] are: 8.095(100)(200), 6.846(9) (210), 6.470(8)(111), 3.317(5)(302), 2.959(5)(132), 2.706(12)(113), 2.157(19)(333), and 2.153(9) (622). The crystal structure was solved on a single crystal (R = 0.055) and gave the following data: orthorhombic, Pbca, a = 16.295(1), b = 13.009(2), c = 8.434(1) angstrom, V= 1787.9(4) angstrom(3), Z = 8. The crystal structure of mejillonesite is based on a sheet (parallel to the b-c plane) formed by two types of MgO(6) octahedra, isolated tetrahedra PO(4) and PO(3)OH whose apical vertices have different orientation with respect to the sheet. The sheets are connected by interlayer, 5-coordinated sodium ions, proton hydration complexes, and hydroxyl groups. The structure of mejillonesite is related to that of angarfite, NaFe(5)(3+)(PO(4))(4)(OH)(4).4H(2)O and bakhchisaraitsevite, Na(2)Mg(5)(PO(4))(4)center dot 7H(2)O.
Resumo:
OBJECTIVES: Idiopathic central precocious puberty and its postponement with a (gonadotropin-releasing hormone) GnRH agonist are complex conditions, the final effects of which on bone mass are difficult to define. We evaluated bone mass, body composition, and bone remodeling in two groups of girls with idiopathic central precocious puberty, namely one group that was assessed at diagnosis and a second group that was assessed three years after GnRH agonist treatment. METHODS: The precocious puberty diagnosis and precocious puberty treatment groups consisted of 12 girls matched for age and weight to corresponding control groups of 12 (CD) and 14 (CT) girls, respectively. Bone mineral density and body composition were assessed by dual X-ray absorptiometry. Lumbar spine bone mineral density was estimated after correction for bone age and the mathematical calculation of volumetric bone mineral density. CONEP: CAAE-0311.0.004.000-06. RESULTS: Lumbar spine bone mineral density was slightly increased in individuals diagnosed with precocious puberty compared with controls; however, after correction for bone age, this tendency disappeared (CD = -0.74 +/- 0.9 vs. precocious puberty diagnosis = -1.73 +/- 1.2). The bone mineral density values of girls in the precocious puberty treatment group did not differ from those observed in the CT group. CONCLUSION: There is an increase in bone mineral density in girls diagnosed with idiopathic central precocious puberty. Our data indicate that the increase in bone mineral density in girls with idiopathic central precocious puberty is insufficient to compensate for the marked advancement in bone age observed at diagnosis. GnRH agonist treatment seems to have no detrimental effect on bone mineral density.
Resumo:
To investigate the potential role of vitamin or mineral supplementation on the risk of head and neck cancer (HNC), we analyzed individual-level pooled data from 12 casecontrol studies (7,002 HNC cases and 8,383 controls) participating in the International Head and Neck Cancer Epidemiology consortium. There were a total of 2,028 oral cavity cancer, 2,465 pharyngeal cancer, 874 unspecified oral/pharynx cancer, 1,329 laryngeal cancer and 306 overlapping HNC cases. Odds ratios (OR) and 95% confidence intervals (CIs) for self reported ever use of any vitamins, multivitamins, vitamin A, vitamin C, vitamin E, and calcium, beta-carotene, iron, selenium and zinc supplements were assessed. We further examined frequency, duration and cumulative exposure of each vitamin or mineral when possible and stratified by smoking and drinking status. All ORs were adjusted for age, sex, race/ethnicity, study center, education level, pack-years of smoking, frequency of alcohol drinking and fruit/vegetable intake. A decreased risk of HNC was observed with ever use of vitamin C (OR = 0.76, 95% CI = 0.590.96) and with ever use of calcium supplement (OR = 0.64, 95% CI = 0.420.97). The inverse association with HNC risk was also observed for 10 or more years of vitamin C use (OR = 0.72, 95% CI = 0.540.97) and more than 365 tablets of cumulative calcium intake (OR = 0.36, 95% CI = 0.160.83), but linear trends were not observed for the frequency or duration of any supplement intake. We did not observe any strong associations between vitamin or mineral supplement intake and the risk of HNC.
Resumo:
Duarte MAH, Alves de Aguiar K, Zeferino MA, Vivan RR, Ordinola-Zapata R, Tanomaru-Filho M, Weckwerth PH, Kuga MC. Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate. International Endodontic Journal, 45, 565570, 2012. Abstract Aim To evaluate the influence of propylene glycol (PG) on the flowability, setting time, pH and calcium ion release of mineral trioxide aggregate (MTA). Methodology Mineral trioxide aggregate was mixed with different proportions of PG, as follows: group 1: MTA + 100% distilled water (DW); group 2: MTA + 80% DW and 20% PG; group 3: MTA + 50% DW and 50% PG; group 4: MTA + 20% DW and 80% PG; group 5: MTA + 100% PG. The ANSI/ADA No. 57 was followed for evaluating the flowability and the setting time was measured by using ASTM C266-08. For pH and calcium release analyses, 50 acrylic teeth with root-end cavities were filled with the materials (n = 10) and individually immersed in flasks containing 10 mL deionized water. After 3 h, 24 h, 72 h and 168 h, teeth were placed in new flasks and the water in which each specimen was immersed had its pH determined by a pH metre and the calcium release measured by an atomic absorption spectrophotometer with a calcium-specific hollow cathode lamp. Data were analysed by using one-way anova test for global comparison and by using Tukeys test for individual comparisons. Results The highest value of flowability was observed with MTA + 20% DW and 80% PG and the lowest values were found with MTA + 100% DW. They were significantly different compared to the other groups (P < 0.05). The presence of PG did not affect the pH and calcium release. The MTA + 100% PG favoured the highest (P < 0.05) pH and calcium release after 3 h. Increasing the PG proportion interfered (P < 0.05) with the setting time; when used at the volume of 100% setting did not occur. Conclusion The addition of PG to MTA-Angelus increased its setting time, improved flowability and increased the pH and calcium ion release during the initial post-mixing periods. The ratio of 80% DW 20% PG is recommended.
Resumo:
Witzkeite, ideally Na4K4Ca(NO3)(2)(SO4)(4)center dot 2H(2)O, is a new mineral found in the oxidation zone of the guano mining field at Punta de Lobos, Tarapaca region, Chile. It occurs as colorless, tabular crystals up to 140 mu m in length, associated with dittmanite and nitratine. Witzkeite is colorless and transparent, with a white streak and a vitreous luster. It is brittle, with Molts hardness 2 and distinct cleavage on {001}. Measured density is 2.40(2) g/cm(3), calculated density is 2.403 g/cm(3). Witzkeite is biaxial (-) with refractive indexes alpha = 1.470(5), beta = 1.495(5), gamma = 1.510(5), measured 2V = 50-70 degrees. The empirical composition is (electron microprobe, mean of five analyses, H2O, CO2, and N2O5 by gas chromatography; wt%): Na2O 12.83, K2O 22.64, CaO 7.57, FeO 0.44, SO3 39.96, N2O5 12.7, H2O 4.5, total 100.64; CO2 was not detected. The chemical formula, calculated based on 24 O, is: Na3.40K3.95Ca1.11Fe0.05(NO3)(1.93)(SO4)(4.10)(H4.10O1.81). Witzkeite is monoclinic, space group C2/c, with unit-cell parameters: a = 24.902(2), b = 5.3323(4), c = 17.246(1) angstrom, beta = 94.281(7)degrees, V = 2283.6(3) angstrom(3) (Z = 4). The crystal structure was solved using single-crystal X-ray diffraction data and refined to R-1(F) = 0.043. Witzkeite belongs to a new structure type and is noteworthy for the very rare simultaneous presence of sulfate and nitrate groups. The eight strongest X-ray powder-diffraction lines [d in angstrom (I in %) (h k l)] are: 12.38 (100) (2 0 0), 4.13 (19) (6 0 0), 3.10 (24) (8 0 0), 2.99 (7) ((8) over bar 02), 2.85 (6) (8 02), 2.69 (9) ((7) over bar 1 3), 2.48 (12) (10 0 0), and 2.07 (54) (12 0 0). The IR spectrum of witzkeite was collected in the range 390-4000 cm(-1). The spectrum shows the typical bands of SO42- ions (1192, 1154, 1116, 1101, 1084, 993, 634, and 617 cm(-1)) and of NO3- ions (1385, 1354, 830, 716, and 2775 cm(-1)). Moreover, a complex pattern of bands related to H2O is visible (bands at 3565, 3419, 3260, 2405, 2110, 1638, and 499 cm(-1)). The IR spectrum is discussed in detail.
Resumo:
Carlosbarbosaite, ideally (UO2)(2)Nb2O6(OH)(2)center dot 2H(2)O, is a new mineral which occurs as a late cavity filling in albite in the Jaguaracu pegmatite, Jaguaracu municipality, Minas Gerais, Brazil. The name honours Carlos do Prado Barbosa (1917-2003). Carlosbarbosaite forms long flattened lath-like crystals with a very simple orthorhombic morphology. The crystals are elongated along [001] and flattened on (100); they are up to 120 mu m long and 2-5 mu m thick. The colour is cream to pale yellow, the streak yellowish white and the lustre vitreous. The mineral is transparent (as individual crystals) to translucent (massive). It is not fluorescent under either long-wave or short-wave ultraviolet radiation. Carlosbarbosaite is biaxial(+) with alpha = 1.760(5), beta = 1.775(5), gamma = 1.795(5), 2V(meas) = 70(1)degrees, 2V(calc) = 83 degrees. The orientation is X parallel to a, Y parallel to b, Z parallel to c. Pleochroism is weak, in yellowish green shades, which are most intense in the Z direction. Two samples were analysed. For sample I, the composition is: UO3 54.52, CaO 2.07, Ce2O3 0.33, Nd2O3 0.49, Nb2O5 14.11, Ta2O5 15.25, TiO2 2.20, SiO2 2.14, Fe2O3 1.08, Al2O3 0.73, H2O (calc.) 11.49, total 104.41 wt.%; the empirical formula is (square 0.68Ca0.28Nd0.02Ce0.02)(Sigma=1.00)[U-1.44 square O-0.56(2.88)(H2O)(1.12)](Nb0.80Ta0.52Si0.27Ti0.21Al0.11Fe0.10)(Sigma=2.01) O-4.72(OH)(3.20)(H2O)(2.08). For sample 2, the composition is: UO3 41.83, CaO 2.10, Ce2O3 0.31, Nd2O3 1.12, Nb2O5 14.64, Ta2O5 16.34, TiO2 0.95, SiO2 3.55, Fe2O3 0.89, Al2O3 0.71, H2O (calc.) 14.99, total 97.43 wt.%; the empirical formula is (square 0.67Ca0.27Nd0.05Ce0.01)(Sigma=1.00)[U-1.04 square O-0.96(2.08)(H2O)(1.92)] (Nb0.79Ta0.53Si0.42Ti0.08Al0.10Fe0.08)(Sigma=2.00)O-4.00(OH)(3.96)(H2O)(2.04). The ideal endmember formula is (UO2)(2)Nb2O6(OH)(2)center dot 2H(2)O. Calculated densities are 4.713 g cm(-3) (sample 1) and 4.172 g cm(-3) (sample 2). Infrared spectra show that both (OH) and H2O are present. The strongest eight X-ray powder-diffraction lines [listed as d in angstrom(I)(hkl)] are: 8.405(8)(110), 7.081(10)(200), 4.201(9)(220), 3.333(6)(202), 3.053(8)(022), 2.931(7)(420), 2.803(6)(222) and 2.589(5)(040,402). The crystal structure was solved using single-crystal X-ray diffraction (R = 0.037) which gave the following data: orthorhombic, Cmem, a = 14.150(6), b = 10.395(4), c = 7.529(3) angstrom, V = 1107(1) angstrom(3), Z = 4. The crystal structure contains a single U site with an appreciable deficiency in electron scattering, which is populated by U atoms and vacancies. The U site is surrounded by seven 0 atoms in a pentagonal bipyramidal arrangemet. The Nb site is coordinated by four 0 atoms and two OH groups in an octahedral arrangement. The half-occupied tunnel Ca site is coordinated by four 0 atoms and four H2O groups. Octahedrally coordinated Nb polyhedra share edges and comers to form Nb2O6(OH)(2) double chains, and edge-sharing pentagonal bipyramidal U polyhedra form UO5 chains. The Nb2O6(OH)(2) and UO5 chains share edges to form an open U-Nb-phi framework with tunnels along [001] that contain Ca(H2O)(4) clusters. Carlosbarbosaite is closely related to a family of synthetic U-Nb-O framework tunnel structures, it differs in that is has an (OH)-bearing framework and Ca(H2O)(4) tunnel occupant. The structure of carlosbarbosaite resembles that of holfertite.
Resumo:
The Apiai gabbro-norite is a massive fine-grained Neoproterozoic intrusion emplaced in a core of synformal structure that deforms low-grade marine metasedimentary rocks of the Ribeira Belt of south-eastern Brazil. The lack of visible magmatic layering or any internal fabric has been a major limitation in deciding whether the emplacement occurred before or after the regional folding. To assist in the tectonic interpretations, we combine low-field anisotropy of magnetic susceptibility (AMS) and silicate shape preferred orientation (SPO) to reveal the internal structure of the mafic intrusion. Magnetic data indicate a mean susceptibility of about 10(-2) SI and a mean anisotropy degree (P) of about 1.08, essentially yielded by titanomagnetite. The magnetic and silicate foliations for P >= 1.10 are parallel to each other, while the lineations tend to scatter on the foliation plane, in agreement with the dominant oblate symmetry of the AMS and SPO ellipsoids. For lower P values, the magnetic and silicate fabrics vary from coaxial to oblique, and for P <= 1.05, their shapes and orientations can be quite distinct. The crystal size distribution (CSD) of plagioclase for P > 1.05 is log linear, in agreement with a bulk simple crystallisation history. These results combined show that for a strong SPO, corresponding to a magnetic anisotropy above 1.10, AMS is a reliable indicator of the magmatic fabric. They indicate that the Apiai gabbro-norite consists of sill-like body that was inclined gently to the north by the regional folding.
Resumo:
Fluorcalciomicrolite, (Ca,Na,□)2Ta2O6F, is a new microlite-group, pyrochlore supergroup mineral approved by the CNMNC (IMA 2012-036). It occurs as an accessory mineral in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Associated minerals include: microcline, albite, quartz, muscovite, spodumene, "lepidolite", cassiterite, tantalite-(Mn), monazite-(Ce), fluorite, "apatite", beryl, "garnet", epidote, magnetite, gahnite, zircon, "tourmaline", bityite, hydrokenomicrolite, and other microlite-group minerals under study. Fluorcalciomicrolite occurs as euhedral, untwinned, octahedral crystals 0.1-1.5 mm in size, occasionally modified by rhombododecahedral faces. The crystals are colourless and translucent; the streak is white, and the lustre is adamantine to resinous. It does not fluoresce under ultraviolet light. Mohs' hardness is 4½- 5, tenacity is brittle. Cleavage is not observed; fracture is conchoidal. The calculated density is 6.160 g/cm3. The mineral is isotropic, ncalc. = 1.992. The Raman spectrum is dominated by bands of B-X octahedral bond stretching and X-B-X bending modes.The chemical composition (n = 6) is (by wavelength dispersive spectroscopy, H2O calculated to obtain charge balance, wt.%): Na2O 4.68, CaO 11.24, MnO 0.01, SrO 0.04, BaO 0.02, SnO2 0.63, UO2 0.02, Nb2O5 3.47, Ta2O5 76.02, F 2.80, H2O 0.48, O=F -1.18, total 98.23. The empirical formula, based on 2 cations at the B site, is (Ca1.07Na0.81□0.12)∑2.00(Ta1.84Nb0.14Sn0.02)∑2.00 [O5.93(OH)0.07]6.00[F0.79(OH)0.21]. The strongest eight X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 5.997(59)(111), 3.138(83)(311), 3.005(100)(222), 2.602(29)(400), 2.004(23)(511), 1.841(23)(440), 1.589(25)(533), and 1.504(24)(444). The crystal structure refinement (R1 = 0.0132) gave the following data: cubic, Fd3m, a = 10.4191(6) Å, V = 1131.07(11) Å3, Z = 8.