3 resultados para metalloporphyrins

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic oxidation of chlorhexidine (CHX, a strong microbicidal agent) mediated by ironporphyrins has been investigated by using hydrogen peroxide, mCPBA, tBuOOH, or NaOCl as oxidant. All of these oxygen donors yielded p-chloroaniline (pCA) as the main product. The higher pCA yields amounted to 71% in the following conditions: catalyst/oxidant/substrate molar ratio of 1:150:50, aqueous medium, FeTMPyP as catalyst. The medium pH also had a strong effect on the pCA yields; in physiological pH, formation of this product was specially favored in the presence of the catalysts, with yields 58% higher than those achieved in control reactions. This provided strong evidence that CHX is metabolized to pCA upon ingestion. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the covalent immobilization of an ironporphyrin, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin iron(III) chloride (FeTFPP), onto maghemite/silica magnetic nanospheres covered with aminofunctionalized silica. The resulting material (gamma-Fe2O3/SiO2-NHFeP) was characterized by diffuse reflectance infrared spectroscopy (DRIFTS) and UV-Vis absorption spectroscopy. The catalytic activity of this magnetic ironporphyrin was investigated in the oxidation of hydrocarbons (styrene, (Z)-cyclooctene and R-(+)-limonene) and an herbicide (simazine) by hydrogen peroxide or 3-chloroperoxybenzoic acid. Hydrocarbon and simazine oxidation reaction products were analyzed by gas chromatography (GC) and high performance liquid chromatography (HPLC), respectively. This catalytic system proved to be efficient and selective for hydrocarbon oxidation, leading to high product yields from styrene (89%), cyclooctene (71%) and R-(+) -limonene (86%). Simazine oxidation was attained with 100% selectivity for a dechlorinated product (OEAT), while several oxidation products were obtained for the same catalyst in homogeneous media. The catalyst can be easily recovered through application of an external magnetic field and washed after reaction. Catalyst reuse experiments for R-(+)-limonene oxidation have shown that the catalytic activity is kept at 90% after 10 consecutive reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bioactive naphtoquinone lapachol was studied in vitro by a biomimetic model with Jacobsen catalyst (manganese(III) salen) and iodosylbenzene as oxidizing agent. Eleven oxidation derivatives were thus identified and two competitive oxidation pathways postulated. Similar to Mn(III) porphyrins, Jacobsen catalyst mainly induced the formation of para-naphtoquinone derivatives of lapachol, but also of two ortho-derivatives. The oxidation products were used to develop a GC MS (SIM mode) method for the identification of potential phase I metabolites in vivo. Plasma analysis of Wistar rats orally administered with lapachol revealed two metabolites, alpha-lapachone and dehydro-alpha-lapachone. Hence, the biomimetic model with a manganese salen complex has evidenced its use as a valuable tool to predict and elucidate the in vivo phase I metabolism of lapachol and possibly also of other bioactive natural compounds. (C) 2012 Elsevier Masson SAS. All rights reserved.