5 resultados para metal-insulator interfaces

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High quality KMo4O6 single crystals with tetragonal structure (space group P4/mbm) have been prepared by fused salt electrolysis. The crystals were studied by scanning electron microscopy (SEM), X-ray diffractometry, electrical resistivity, and magnetization measurements. X-ray powder diffraction patterns and SEM have given some information on the growth of single crystals. Electrical resistivity as a function of temperature shows that the KMo4O6 compound is a bad metal with resistivity change of approximately 30% in the temperature range from 2 to 300K. A metal-insulator transition (MIT), observed at approximately 110K, has been also confirmed for this material. Magnetization as a function of temperature agrees with previous report, however a magnetic ordering has been observed in M(H) curves in the whole temperature range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A metal-insulator transition in a two-dimensional semimetal based on HgTe quantum wells is discovered. The transition is induced by a magnetic field applied parallel to the plane of the quantum well. The threshold behavior of the activation energy as a function of the magnetic-field strength and an abrupt reduction of the Hall resistance at the onset of the transition suggest that the observed effect originates from the formation of an excitonic insulator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrical resistivity measurements were performed on p-type Pb1-xEuxTe films with Eu content x = 4%, 5%, 6%, 8%, and 9%. The well-known metal-insulator transition that occurs around 5% at room temperature due to the introduction of Eu is observed, and we used the differential activation energy method to study the conduction mechanisms present in these samples. In the insulator regime (x>6%), we found that band conduction is the dominating conduction mechanism for high temperatures with carriers excitation between the valence band and the 4f levels originated from the Eu atoms. We also verified that mix conduction dominates the low temperatures region. Samples with x = 4% and 5% present a temperature dependent metal insulator transition and we found that this dependence can be related to the relation between the thermal energy k(B)T and the activation energy Delta epsilon(a). The physical description obtained through the activation energy analysis gives a new insight about the conduction mechanisms in insulating p-type Pb1-xEuxTe films and also shed some light over the influence of the 4f levels on the transport process in the insulator region. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729813]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates in the limit U -> infinity and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole continuum in the limit U -> 0. Power-law singularities along boundary lines of the spectrum are described by effective impurity models that are explicitly invariant under spin and eta-spin SU(2) rotations. The Mott-Hubbard metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0. The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove singularity that persists as a consequence of integrability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The admittance spectra and current-voltage (I-V) characteristics are reported of metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) capacitors employing cross-linked poly(amide-imide) (c-PAI) as the insulator and poly(3-hexylthiophene) (P3HT) as the active semiconductor. The capacitance of the MIM devices are constant in the frequency range from 10 Hz to 100 kHz, with tan delta values as low as 7 x 10(-3) over most of the range. Except at the lowest voltages, the I-V characteristics are well-described by the Schottky equation for thermal emission of electrons from the electrodes into the insulator. The admittance spectra of the MIS devices displayed a classic Maxwell-Wagner frequency response from which the transverse bulk hole mobility was estimated to be similar to 2 x 10(-5) cm(2) V(-1)s(-1) or similar to 5 x 10(-8) cm(2) V(-1)s(-1) depending on whether or not the surface of the insulator had been treated with hexamethyldisilazane (HMDS) prior to deposition of the P3HT. From the maximum loss observed in admittance-voltage plots, the interface trap density was estimated to be similar to 5 x 10(10) cm(-2) eV(-1) or similar to 9 x 10(10) cm(-2) eV(-1) again depending whether or not the insulator was treated with HMDS. We conclude, therefore, that HMDS plays a useful role in promoting order in the P3HT film as well as reducing the density of interface trap states. Although interposing the P3HT layer between the insulator and the gold electrode degrades the insulating properties of the c-PAI, nevertheless, they remain sufficiently good for use in organic electronic devices. (c) 2012 Elsevier B.V. All rights reserved.