18 resultados para maximum-likelihood estimation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this article we introduce a three-parameter extension of the bivariate exponential-geometric (BEG) law (Kozubowski and Panorska, 2005) [4]. We refer to this new distribution as the bivariate gamma-geometric (BGG) law. A bivariate random vector (X, N) follows the BGG law if N has geometric distribution and X may be represented (in law) as a sum of N independent and identically distributed gamma variables, where these variables are independent of N. Statistical properties such as moment generation and characteristic functions, moments and a variance-covariance matrix are provided. The marginal and conditional laws are also studied. We show that BBG distribution is infinitely divisible, just as the BEG model is. Further, we provide alternative representations for the BGG distribution and show that it enjoys a geometric stability property. Maximum likelihood estimation and inference are discussed and a reparametrization is proposed in order to obtain orthogonality of the parameters. We present an application to a real data set where our model provides a better fit than the BEG model. Our bivariate distribution induces a bivariate Levy process with correlated gamma and negative binomial processes, which extends the bivariate Levy motion proposed by Kozubowski et al. (2008) [6]. The marginals of our Levy motion are a mixture of gamma and negative binomial processes and we named it BMixGNB motion. Basic properties such as stochastic self-similarity and the covariance matrix of the process are presented. The bivariate distribution at fixed time of our BMixGNB process is also studied and some results are derived, including a discussion about maximum likelihood estimation and inference. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this paper we introduce a new distribution, namely, the slashed half-normal distribution and it can be seen as an extension of the half-normal distribution. It is shown that the resulting distribution has more kurtosis than the ordinary half-normal distribution. Moments and some properties are derived for the new distribution. Moment estimators and maximum likelihood estimators can computed using numerical procedures. Results of two real data application are reported where model fitting is implemented by using maximum likelihood estimation. The applications illustrate the better performance of the new distribution.
Resumo:
In this paper, an alternative skew Student-t family of distributions is studied. It is obtained as an extension of the generalized Student-t (GS-t) family introduced by McDonald and Newey [10]. The extension that is obtained can be seen as a reparametrization of the skewed GS-t distribution considered by Theodossiou [14]. A key element in the construction of such an extension is that it can be stochastically represented as a mixture of an epsilon-skew-power-exponential distribution [1] and a generalized-gamma distribution. From this representation, we can readily derive theoretical properties and easy-to-implement simulation schemes. Furthermore, we study some of its main properties including stochastic representation, moments and asymmetry and kurtosis coefficients. We also derive the Fisher information matrix, which is shown to be nonsingular for some special cases such as when the asymmetry parameter is null, that is, at the vicinity of symmetry, and discuss maximum-likelihood estimation. Simulation studies for some particular cases and real data analysis are also reported, illustrating the usefulness of the extension considered.
Resumo:
Ng and Kotz (1995) introduced a distribution that provides greater flexibility to extremes. We define and study a new class of distributions called the Kummer beta generalized family to extend the normal, Weibull, gamma and Gumbel distributions, among several other well-known distributions. Some special models are discussed. The ordinary moments of any distribution in the new family can be expressed as linear functions of probability weighted moments of the baseline distribution. We examine the asymptotic distributions of the extreme values. We derive the density function of the order statistics, mean absolute deviations and entropies. We use maximum likelihood estimation to fit the distributions in the new class and illustrate its potentiality with an application to a real data set.
Resumo:
Lemonte and Cordeiro [Birnbaum-Saunders nonlinear regression models, Comput. Stat. Data Anal. 53 (2009), pp. 4441-4452] introduced a class of Birnbaum-Saunders (BS) nonlinear regression models potentially useful in lifetime data analysis. We give a general matrix Bartlett correction formula to improve the likelihood ratio (LR) tests in these models. The formula is simple enough to be used analytically to obtain several closed-form expressions in special cases. Our results generalize those in Lemonte et al. [Improved likelihood inference in Birnbaum-Saunders regressions, Comput. Stat. DataAnal. 54 (2010), pp. 1307-1316], which hold only for the BS linear regression models. We consider Monte Carlo simulations to show that the corrected tests work better than the usual LR tests.
Resumo:
Long-term survival models have historically been considered for analyzing time-to-event data with long-term survivors fraction. However, situations in which a fraction (1 - p) of systems is subject to failure from independent competing causes of failure, while the remaining proportion p is cured or has not presented the event of interest during the time period of the study, have not been fully considered in the literature. In order to accommodate such situations, we present in this paper a new long-term survival model. Maximum likelihood estimation procedure is discussed as well as interval estimation and hypothesis tests. A real dataset illustrates the methodology.
Resumo:
We study a five-parameter lifetime distribution called the McDonald extended exponential model to generalize the exponential, generalized exponential, Kumaraswamy exponential and beta exponential distributions, among others. We obtain explicit expressions for the moments and incomplete moments, quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and Gini concentration index. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The applicability of the new model is illustrated by means of a real data set.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
In this paper, we carry out robust modeling and influence diagnostics in Birnbaum-Saunders (BS) regression models. Specifically, we present some aspects related to BS and log-BS distributions and their generalizations from the Student-t distribution, and develop BS-t regression models, including maximum likelihood estimation based on the EM algorithm and diagnostic tools. In addition, we apply the obtained results to real data from insurance, which shows the uses of the proposed model. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
This paper proposes a general class of regression models for continuous proportions when the data contain zeros or ones. The proposed class of models assumes that the response variable has a mixed continuous-discrete distribution with probability mass at zero or one. The beta distribution is used to describe the continuous component of the model, since its density has a wide range of different shapes depending on the values of the two parameters that index the distribution. We use a suitable parameterization of the beta law in terms of its mean and a precision parameter. The parameters of the mixture distribution are modeled as functions of regression parameters. We provide inference, diagnostic, and model selection tools for this class of models. A practical application that employs real data is presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Accurate estimates of the penetrance rate of autosomal dominant conditions are important, among other issues, for optimizing recurrence risks in genetic counseling. The present work on penetrance rate estimation from pedigree data considers the following situations: 1) estimation of the penetrance rate K (brief review of the method); 2) construction of exact credible intervals for K estimates; 3) specificity and heterogeneity issues; 4) penetrance rate estimates obtained through molecular testing of families; 5) lack of information about the phenotype of the pedigree generator; 6) genealogies containing grouped parent-offspring information; 7) ascertainment issues responsible for the inflation of K estimates.
Resumo:
In this paper we introduce an extension of the Lindley distribution which offers a more flexible model for lifetime data. Several statistical properties of the distribution are explored, such as the density, (reversed) failure rate, (reversed) mean residual lifetime, moments, order statistics, Bonferroni and Lorenz curves. Estimation using the maximum likelihood and inference of a random sample from the distribution are investigated. A real data application illustrates the performance of the distribution. (C) 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper, we proposed a new three-parameter long-term lifetime distribution induced by a latent complementary risk framework with decreasing, increasing and unimodal hazard function, the long-term complementary exponential geometric distribution. The new distribution arises from latent competing risk scenarios, where the lifetime associated scenario, with a particular risk, is not observable, rather we observe only the maximum lifetime value among all risks, and the presence of long-term survival. The properties of the proposed distribution are discussed, including its probability density function and explicit algebraic formulas for its reliability, hazard and quantile functions and order statistics. The parameter estimation is based on the usual maximum-likelihood approach. A simulation study assesses the performance of the estimation procedure. We compare the new distribution with its particular cases, as well as with the long-term Weibull distribution on three real data sets, observing its potential and competitiveness in comparison with some usual long-term lifetime distributions.