61 resultados para mRNA expression profile

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Impaired apoptosis has been implicated in the development of childhood adrenocortical tumors (ACT), although the expression of apoptosis-related gene expression in such tumors has not been reported. Methods: The mRNA expression levels of the genes CASP3, CASP8, CASP9, FAS, TNF, NFKB, and BCL2 were analyzed by quantitative real-time PCR in consecutive tumor samples obtained at diagnosis from 60 children with a diagnosis of ACT and in 11 non-neoplastic adrenal samples. BCL2 and TNF protein expression was analyzed by immunohistochemistry. Results: A significant association was observed between tumor size >= 100 g and lower expression levels of the BCL2 (P=0.03) and TNF (P=0.05) genes; between stage IV and lower expression levels of CASP3 (P=0.008), CASP9 (P=0.02), BCL2 (P=0.002), TNF (P=0.05), and NFKB (P=0.03); Weiss score >= 3 and lower expression of TNF (P=0.01); unfavorable event and higher expression values of CASP9 (P=0.01) and lower values of TNF (P=0.02); and death and lower expression of BCL2 (P=0.04). Underexpression of TNF was associated with lower event-free survival in uni- and multivariate analyses (P<0.01). Similar results were observed when patients with Weiss score <3 were excluded. Conclusion: This study supports the participation of apoptosis-related genes in the biology and prognosis of childhood ACT and suggests the complex role of these genes in the pathogenesis of this tumor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Menopause is associated with changes in lipid levels resulting in increased risk of atherosclerosis and cardiovascular events. Hormone therapy (HT) and atorvastatin have been used to improve lipid profile in postmenopausal women. Effects of HT, atorvastatin and APOE polymorphisms on serum lipids and APOE and LXRA expression were evaluated in 87 hypercholesterolemic postmenopausal women, randomly selected for treatment with atorvastatin (AT, n=17), estrogen or estrogen plus progestagen (HT, n=34) and estrogen or estrogen plus progestagen associated with atorvastatin (HT+AT, n=36). RNA was extracted from peripheral blood mononuclear cells (PBMC) and mRNA expression was measured by TaqMan (R) PCR. APOE epsilon 2/epsilon 3/epsilon 4 genotyping was performed using PCR-RFLP. Total cholesterol (TC). LDL-c and apoB were reduced after each treatment (p<0.001). Triglycerides, VLDL-c and apoAl were reduced only after atorvastatin (p<0.05), whereas triglycerides and VLDL-c were increased after HT (p=0.01). HT women had lower reduction on TC, LDL-c and apoB than AT and HT+AT groups (p<0.05). APOE mRNA expression was reduced after atorvastatin treatment (p=0.03). Although LXRA gene expression was not modified by atorvastatin, it was correlated with APOE mRNA before and after treatments. Basal APOE mRNA expression was not influenced by gene polymorphisms, however the reduction on APOE expression was more pronounced in epsilon 3 epsilon 3 than in epsilon 3 epsilon 4 carriers. Atorvastatin down-regulates APOE mRNA expression and it is modified by APOE genotypes in PBMC from postmenopausal women. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05). Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for molecular markers to improve diagnosis, individualize treatment and predict behavior of tumors has been the focus of several studies. This study aimed to analyze homeobox gene expression profile in oral squamous cell carcinoma (OSCC) as well as to investigate whether some of these genes are relevant molecular markers of prognosis and/or tumor aggressiveness. Homeobox gene expression levels were assessed by microarrays and qRT-PCR in OSCC tissues and adjacent non-cancerous matched tissues (margin), as well as in OSCC cell lines. Analysis of microarray data revealed the expression of 147 homeobox genes, including one set of six at least 2-fold up-regulated, and another set of 34 at least 2-fold down-regulated homeobox genes in OSCC. After qRT-PCR assays, the three most up-regulated homeobox genes (HOXA5, HOXD10 and HOXD11) revealed higher and statistically significant expression levels in OSCC samples when compared to margins. Patients presenting lower expression of HOXA5 had poorer prognosis compared to those with higher expression (P=0.03). Additionally, the status of HOXA5, HOXD10 and HOXD11 expression levels in OSCC cell lines also showed a significant up-regulation when compared to normal oral keratinocytes. Results confirm the presence of three significantly upregulated (>4-fold) homeobox genes (HOXA5, HOXD10 and HOXD11) in OSCC that may play a significant role in the pathogenesis of these tumors. Moreover, since lower levels of HOXA5 predict poor prognosis, this gene may be a novel candidate for development of therapeutic strategies in OSCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44: 1003-1012, 2012. First published September 4, 2012; doi: 10.1152/physiolgenomics.00058.2012.-Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene a-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: We identified miRNA expression profiles in urothelial carcinoma that are associated with grade, stage, and recurrence-free and disease specific survival. Materials and Methods: The expression of 14 miRNAs was evaluated by quantitative reverse transcriptase-polymerase chain reaction in surgical specimens from 30 patients with low grade, noninvasive (pTa) and 30 with high grade, invasive (pT2-3) urothelial carcinoma. Controls were normal bladder tissue from 5 patients who underwent surgical treatment for benign prostatic hyperplasia. Endogenous controls were RNU-43 and RNU-48. miRNA profiles were compared and Kaplan-Meier curves were constructed to analyze disease-free and disease specific survival. Results: miR-100 was under expressed in 100% of low grade pTa specimens (p <0.001) and miR-10a was over expressed in 73.3% (p <0.001). miR-21 and miR-205 were over expressed in high grade pT2-3 disease (p = 0.02 and <0.001, respectively). The other miRNAs were present at levels similar to those of normal bladder tissue or under expressed in each tumor group. miR-21 over expression (greater than 1.08) was related to shorter disease-free survival in patients with low grade pTa urothelial carcinoma. Higher miR-10a levels (greater than 2.30) were associated with shorter disease-free and disease specific survival in patients with high grade pT2-3 urothelial carcinoma. Conclusions: Four miRNAs were differentially expressed in the 2 urothelial carcinoma groups. miR-100 and miR-10a showed under expression and over expression, respectively, in low grade pTa tumors. miR-21 and miR-205 were over expressed in pT2-3 disease. In addition, miR-10a and miR-21 over expression was associated with shorter disease-free and disease specific survival. miRNAs could be incorporated into the urothelial carcinoma molecular pathway. These miRNAs could also serve as new diagnostic or prognostic markers and new target drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosoma mansoni is responsible for schistosomiasis, a parasitic disease that affects 200 million people worldwide. Molecular mechanisms of host-parasite interaction are complex and involve a crosstalk between host signals and parasite receptors. TGF-beta signaling pathway has been shown to play an important role in S. mansoni development and embryogenesis. In particular human (h) TGF-beta has been shown to bind to a S. mansoni receptor, transduce a signal that regulates the expression of a schistosome target gene. Here we describe 381 parasite genes whose expression levels are affected by in vitro treatment with hTGF-beta. Among these differentially expressed genes we highlight genes related to morphology, development and cell cycle that could be players of cytokine effects on the parasite. We confirm by qPCR the expression changes detected with microarrays for 5 out of 7 selected genes. We also highlight a set of non-coding RNAs transcribed from the same loci of protein-coding genes that are differentially expressed upon hTCF-beta treatment. These datasets offer potential targets to be explored in order to understand the molecular mechanisms behind the possible role of hTGF-beta effects on parasite biology. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iodine is a critical element involved in thyroid hormone synthesis. Its efflux into the follicular lumen is thought to occur, in part, through pendrin at the apical membrane of thyrocytes. This study attempted to investigate whether iodide administration affects SLC26A4 mRNA expression in rat thyroid and in PCCl3 cells. Rats and cells were treated or not with Nal from 30 min up to 48 h. One group was concomitantly treated with sodium perchlorate. SLC26A4 mRNA expression was also investigated in PCCl3 cells treated with actinomycin D prior to Nal treatment. Iodide administration significantly increased SLC26A4 mRNA content in both models. The simultaneous administration of Nal and perchlorate, as well as the treatment of PCCl3 cells with actinomycin D prevented this effect, indicating that intracellular iodide is essential for this event, which appears to be triggered by transcriptional mechanisms. These data show that intracellular iodide rapidly upregulates SLC26A4 mRNA expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HER-2-positive breast cancers frequently sustain elevated AKT/mTOR signaling, which has been associated with resistance to doxorubicin treatment. Here, we investigated whether rapamycin, an mTOR inhibitor, increased the sensitivity to doxorubicin therapy in two HER-2-overexpressing cell lines: C5.2, which was derived from the parental HB4a by transfection with HER-2 and SKBR3, which exhibits HER-2 amplification. The epithelial mammary cell line HB4a was also analyzed. The combined treatment using 20 nmol/L of rapamycin and 30 nmol/L of doxorubicin arrested HB4a and C5.2 cells in S to G(2)-M, whereas SKBR3 cells showed an increase in the G(0)-G(1) phase. Rapamycin increased the sensitivity to doxorubicin in HER-2-overexpressing cells by approximately 2-fold, suggesting that the combination displayed a more effective antiproliferative action. Gene expression profiling showed that these results might reflect alterations in genes involved in canonical pathways related to purine metabolism, oxidative phosphorylation, protein ubiquitination, and mitochondrial dysfunction. A set of 122 genes modulated by the combined treatment and specifically related to HER-2 overexpression was determined by finding genes commonly regulated in both C5.2 and SKBR3 that were not affected in HB4a cells. Network analysis of this particular set showed a smaller subgroup of genes in which coexpression pattern in HB4a cells was disrupted in C5.2 and SKBR3. Altogether, our data showed a subset of genes that might be more robust than individual markers in predicting the response of HER-2-overexpressing breast cancers to doxorubicin and rapamycin combination. Mol Cancer Ther; 11(2); 464-74. (C) 2011 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study aims to explore the possible relationship between the expression level of S100 beta protein mRNA with diabetes mellitus type 2 in adipocytes from patients with this disease in comparison with normoglycemic individuals. Materials and methods: Samples of adipose tissue of eight patients from the coronary section of the Institute Dante Pazzanese of Cardiology (IDPC), four in Group Diabetes and four of Normoglycemic group, were evaluated by RT-PCR real time. Results: An increase around 15 times values, between the threshold cycle (Delta Ct), of mRNA expression of S100 beta protein in adipocytes of the diabetes group was observed in comparison to the control group (p = 0.015). Conclusion: Our results indicate, for the first time, that there is coexistence of increased expression of the S100 beta and the type 2 diabetes mellitus gene. Arq Bras Endocrinol Metab. 2012;56(7):435-40

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some organ-transplanted patients achieve a state of "operational tolerance" (01) in which graft function is maintained after the complete withdrawal of immunosuppressive drugs. We used a gene panel of regulatory/inflammatory molecules (FOXP3, GATA3, 100, TGFB1, TGFBR1/TBX21, TNF and IFNG) to investigate the gene expression profile in peripheral blood mononuclear cells of renal-transplanted individuals experiencing OT compared to transplanted individuals not displaying OT and healthy individuals (HI). OT subjects showed a predominant regulatory (REG) profile with higher gene expression of GATA3, FOXP3, TGFB1 and TGFB receptor 1 compared to the other groups. This predominant REG gene expression profile displayed stability over time. The significant GATA3 gene and protein expressions in OT individuals suggest that a Th2 deviation may be a relevant pathway to OT. Moreover, the capacity of the REG/INFLAMMA gene panel to discriminate OT by peripheral blood analysis indicates that this state has systemic repercussions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Current evidence implicates aberrant microRNA expression patterns in human malignancies; measurement of microRNA expression may have diagnostic and prognostic applications. Roles for microRNAs in head and neck squamous cell carcinomas (HNSCC) are largely unknown. HNSCC, a smoking-related cancer, is one of the most common malignancies worldwide but reliable diagnostic and prognostic markers have not been discovered so far. Some studies have evaluated the potential use of microRNA as biomarkers with clinical application in HNSCC. Methods MicroRNA expression profile of oral squamous cell carcinoma samples was determined by means of DNA microarrays. We also performed gain-of-function assays for two differentially expressed microRNA using two squamous cell carcinoma cell lines and normal oral keratinocytes. The effect of the over-expression of these molecules was evaluated by means of global gene expression profiling and cell proliferation assessment. Results Altered microRNA expression was detected for a total of 72 microRNAs. Among these we found well studied molecules, such as the miR-17-92 cluster, comprising potent oncogenic microRNA, and miR-34, recently found to interact with p53. HOX-cluster embedded miR-196a/b and miR-10b were up- and down-regulated, respectively, in tumor samples. Since validated HOX gene targets for these microRNAs are not consistently deregulated in HNSCC, we performed gain-of-function experiments, in an attempt to outline their possible role. Our results suggest that both molecules interfere in cell proliferation through distinct processes, possibly targeting a small set of genes involved in cell cycle progression. Conclusions Functional data on miRNAs in HNSCC is still scarce. Our data corroborate current literature and brings new insights into the role of microRNAs in HNSCC. We also show that miR-196a and miR-10b, not previously associated with HNSCC, may play an oncogenic role in this disease through the deregulation of cell proliferation. The study of microRNA alterations in HNSCC is an essential step to the mechanistic understanding of tumor formation and could lead to the discovery of clinically relevant biomarkers.