23 resultados para laser diode thermal desorption

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: In this study, we evaluated the effects of a low-level laser on bone regeneration in rapid maxillary expansion procedures. Methods: Twenty-seven children, aged 8 to 12 years, took part in the experiment, with a mean age of 10.2 years, divided into 2 groups: the laser group (n=14), in which rapid maxillary expansion was performed in conjunction with laser use, and the no-laser group (n=13), with rapid maxillary expansion only. The activation protocol of the expansion screw was 1 full turn on the first day and a half turn daily until achieving overcorrection. The laser type used was a laser diode (TWIN Laser; MMOptics, Sao Carlos, Brazil), according to the following protocol: 780 nm wavelength, 40 mW power, and 10 J/cm(2) density at 10 points located around the midpalatal suture. The application stages were 1 (days 1-5 of activation), 2 (at screw locking, on 3 consecutive days), 3, 4, and 5 (7, 14, and 21 days after stage 2). Occlusal radiographs of the maxilla were taken with the aid of an aluminum scale ruler as a densitometry reference at different times: T1 (initial), T2 (day of locking), T3 (3-5 days after T2), T4 (30 days after T3), and T5 (60 days after T4). The radiographs were digitized and submitted to imaging software (Image Tool; UTHSCSA, San Antonio, Tex) to measure the optic density of the previously selected areas. To perform the statistical test, analysis of covariance was used, with the time for the evaluated stage as the covariable. In all tests, a significance level of 5% (P<0.05) was adopted. Results: From the evaluation of bone density, the results showed that the laser improved the opening of the midpalatal suture and accelerated the bone regeneration process. Conclusions: The low-level laser, associated with rapid maxillary expansion, provided efficient opening of the midpalatal suture and influenced the bone regeneration process of the suture, accelerating healing. (Am J Orthod Dentofacial Orthop 2012;141:444-50)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dentin wall structural changes caused by 810-nm-diode laser irradiation can influence the sealing ability of endodontic sealers. The objective of this study was to evaluate the apical leakage of AH Plus and RealSeal resin-based sealers with and without prior diode laser irradiation. Fifty-two single-rooted mandibular premolars were prepared and divided into 4 groups, according to the endodontic sealer used and the use or non-use of laser irradiation. The protocol for laser irradiation was 2.5W, continuous wave in scanning mode, with 4 exposures per tooth. After sample preparation, apical leakage of 50% ammoniacal silver nitrate impregnation was analyzed. When the teeth were not exposed to irradiation, the Real Seal sealer achieved the highest scores, showing the least leakage, with significant differences at the 5% level (Kruskal-Wallis test, p = 0.0004), compared with AH Plus. When the teeth were exposed to the 810-nm-diode laser irradiation, the sealing ability of AH Plus sealer was improved (p = 0282). In the Real Seal groups, the intracanal laser irradiation did not interfere with the leakage index, showing similar results in the GRS and GRSd groups (p = 0.1009).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of nanoassisted laser desorption-ionization mass spectrometry (NALDI-MS) imaging to provide selective chemical monitoring with proper spatial distribution of lipid profiles from tumor tissues after plate imprinting has been tested. NALDI-MS imaging identified and mapped several potential lipid biomarkers in a murine model of melanoma tumor (inoculation of B16/F10 cells). It also confirmed that the in vivo treatment of tumor bearing mice with synthetic supplement containing phosphoethanolamine (PHO-S) promoted an accentuated decrease in relative abundance of the tumor biomarkers. NALDI-MS imaging is a matrix-free LDI protocol based on the selective imprinting of lipids in the NALDI plate followed by the removal of the tissue. It therefore provides good quality and selective chemical images with preservation of spatial distribution and less interference from tissue material. The test case described herein illustrates the potential of chemically selective NALDI-MS imaging for biomarker discovery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temperature changes caused by laser irradiation can promote damage to the surrounding dental tissues. In this study, we evaluated the temperature changes of recently extracted human mandibular incisors during intracanal irradiation with an 810-nm diode laser at different settings. Fifty mandibular incisors were enlarged up to an apical size of ISO No. 40 file. After the final rinse with 17% ethylenediaminetetraacetic acid, 0.2% lauryl sodium sulfate biologic detergent, and sterile water, samples were irradiated with circular movements from apex to crown through five different settings of output power (1.5, 2.0, 2.5, 3.0, and 3.5 W) in continuous mode. The temperature changes were measured on both sides of the apical and middle root thirds using two thermopar devices. A temperature increase of 7 degrees C was considered acceptable as a safe threshold when applying the diode laser. Results: The results showed that only 3.5-W output power increased the outer surface temperature above the critical value. Conclusion: The recommended output power can be stipulated as equal to or less than 3 W to avoid overheating during diode laser irradiation on thin dentin walls. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.1.015006]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the microhardness of radicular dentin after treatment with 980-nm diode laser and different irrigant solutions. Background data: There are few reports of the consequences of diode laser irradiation emitted at 980 nm on the mechanical properties of dentin. Methods: Seventy-two single canal, human canines with complete root formation were randomly distributed among three groups (n = 24), according to the irrigant solution used in the biomechanical preparation: distilled water; 1% NaOCl; and, 1% NaOCl + 17% EDTA. These groups subsequently were divided into three subgroups (n = 8), according to the diode laser parameter: no irradiation (control); 1.5W/100 Hz; and 3.0 W/100 Hz. Laser was applied with helicoidal movements for 20 sec. Roots were sectioned in slices and the fragment corresponding to the middle third was submitted to the microhardness test (KHN) at depths of 30, 90, 150, and 300 mu m. Results: ANOVA and Tukey tests showed that the microhardness of the groups irradiated with 1.5 W/100 Hz (49.7 +/- 11.2) and 3.0W/100 Hz (50.6 +/- 11.9) were statistically similar to each other (p > 0.05) and different (p < 0.05) from the non-irradiated group (45.0 +/- 9.7). Higher microhardness values were obtained at 150 mu m (49.2 +/- 11.0) and 300 mu m (52.3 +/- 11.3) which were similar among themselves and different (p < 0.05) only at the depth of 30 mu m (44.4 +/- 10.5). No differences were found among the irrigant solutions (p > 0.05). Conclusions: The microhardness of the radicular dentin increased after irradiation with 980-nm diode laser.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to assess the influence of Er:YAG laser pulse repetition rate on the thermal alterations occurring during laser ablation of sound and demineralized primary dentin. The morphological changes at the lased areas were examined by scanning electronic microscopy (SEM). To this end, 60 fragments of 30 sound primary molars were selected and randomly assigned to two groups (n = 30); namely A sound dentin (control) and B demineralized dentin. Each group was divided into three subgroups (n = 10) according to the employed laser frequencies: I4 Hz; II6 Hz, and III10 Hz. Specimens in group B were submitted to a pH-cycling regimen for 21 consecutive days. The irradiation was performed with a 250 mJ pulse energy in the noncontact and focused mode, in the presence of a fine water mist at 1.5 mL/min, for 15 s. The measured temperature was recorded by type K thermocouples adapted to the dentin wall relative to the pulp chamber. Three samples of each group were analyzed by SEM. The data were submitted to the nonparametric Kruskal-Wallis test and to qualitative SEM analysis. The results revealed that the temperature increase did not promote any damage to the dental structure. Data analysis demonstrated that in group A, there was a statistically significant difference among all the subgroups and the temperature rise was directly proportional to the increase in frequency. In group B, there was no difference between subgroup I and II in terms of temperature. The superficial dentin observed by SEM displayed irregularities that augmented with rising frequency, both in sound and demineralized tissues. In conclusion, temperature rise and morphological alterations are directly related to frequency increment in both demineralized and sound dentin. Microsc. Res. Tech., 2011. (c) 2011 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study reports the effects on micromorphology and temperature rise in human dentin using different frequencies of Er:YAG laser. Sixty human dentin fragments were randomly assigned into two groups (n = 30): carious or sound dentin. Both groups were divided into three subgroups (n = 10), according to the Er:YAG laser frequency used: 4, 6, or 10 Hz (energy: 200 mJ; irradiation distance: 12 mm; and irradiation time: 20 s). A thermocouple adapted to the tooth fragment recorded the initial temperature value (degrees C); then, the temperature was measured after the end of the irradiation (20 s). Morphological analysis was performed using images obtained with scanning electron microscope. There was no difference between the temperatures obtained with 4 and 6 Hz; the highest temperatures were achieved with 10 Hz. No difference was observed between carious and sound dentin. Morphological analyses revealed that all frequencies promoted irregular surface in sound dentin, being observed more selectively ablation especially in intertubular dentin with tubule protrusion. The caries dentin presented flat surface for all frequencies used. Both substrates revealed absence of any signs of thermal damage. It may be concluded that the parameters used in this study are capable to remove caries lesion, having acceptable limits of temperature rise and no significant morphological alterations on dentin surface. Microsc. Res. Tech. 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free-carrier absorption cross-section sigma of a magnetic colloid composed of magnetite nanoparticles dispersed in oil is obtained by using the Z-scan technique in different experimental conditions of the laser beam. We show that it is possible to obtain sigma with picosecond pulsed and millisecond chopped beams with pulse frequencies smaller than about 30 Hz. For higher pulse frequencies, the heating of the colloidal system triggers the appearance of the Soret effect. This effect artificially increases the value of sigma calculated from the experimental results. The limits of the different experimental setups are discussed. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Nd:YLF/KGW Raman laser has been investigated in this work. We have demonstrated CW output powers at six different wavelengths, 1147 nm (0.70 W), 1163 nm (0.95 W), 549 nm (0.65 W), 552 nm (1.90 W), 573 nm (0.60 W) and 581 nm (1.10 W), with higher peak powers achieved under quasi-CW operation. Raman conversion of the 1053 nm fundamental emission is reported for the first time, enabling two new wavelengths in crystalline Raman lasers, 549 nm and 552 nm. The weak thermal lensing associated with Nd:YLF has enabled to achieve good beam quality, M-2 <= 2.0, and stable operation in relatively long cavities. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-purity niobium powders can be obtained from the well-known hydride-dehydride (HDH) process. The aim of this work was the investigation of the structural phase transition of the niobium hydride to niobium metal as function of temperature, heating rate and time. The niobium powder used in this work was obtained by high-temperature hydriding of niobium machining chips followed by conventional ball milling and sieving. X-ray diffraction measurements were carried out in vacuum using a high-temperature chamber coupled to an X-ray diffractometer. During the dehydriding process, it is possible to follow the phase transition from niobium hydride to niobium metal starting at about 380 degrees C for a heating rate of 20 degrees C/min. The heating rate was found to be an important parameter, since complete dehydriding was obtained at 490 degrees C for a heating rate of 20 degrees C/min. The higher dehydriding rate was found at 500 degrees C. Results contribute to a better understanding of the kinetics of thermal decomposition of niobium hydride to niobium metal. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study aimed to investigate the effect of 830 and 670 nm diode laser on the viability of random skin flaps in rats. Background data: Low-level laser therapy (LLLT) has been reported to be successful in stimulating the formation of new blood vessels and reducing the inflammatory process after injury. However, the efficiency of such treatment remains uncertain, and there is also some controversy regarding the efficacy of different wavelengths currently on the market. Materials and methods: Thirty Wistar rats were used and divided into three groups, with 10 rats in each. A random skin flap was raised on the dorsum of each animal. Group 1 was the control group, group 2 received 830 nm laser radiations, and group 3 was submitted to 670 nm laser radiation (power density = 0.5 mW/cm(2)). The animals underwent laser therapy with 36 J/cm(2) energy density (total energy = 2.52 J and 72 sec per session) immediately after surgery and on the 4 subsequent days. The application site of laser radiation was one point at 2.5 cm from the flap's cranial base. The percentage of skin flap necrosis area was calculated on the 7th postoperative day using the paper template method. A skin sample was collected immediately after to determine the vascular endothelial growth factor (VEGF) expression and the epidermal cell proliferation index (KiD67). Results: Statistically significant differences were found among the percentages of necrosis, with higher values observed in group 1 compared with groups 2 and 3. No statistically significant differences were found among these groups using the paper template method. Group 3 presented the highest mean number of blood vessels expressing VEGF and of cells in the proliferative phase when compared with groups 1 and 2. Conclusions: LLLT was effective in increasing random skin flap viability in rats. The 670 nm laser presented more satisfactory results than the 830 nm laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a detailed study of the Baryscan technique, a new efficient alternative to the widespread Z-scan technique which has been demonstrated [Opt. Lett. 36:8, 2011] to reach among the highest sensitivity levels. This method is based upon the measurement of optical nonlinearities by means of beam centroid displacements with a position sensitive detector and is able to deal with any kind of lensing effect. This technique is applied here to measure pump-induced electronic refractive index changes (population lens), which can be discriminated from parasitic thermal effects by using a time-resolved Baryscan experiment. This method is validated by evaluating the polarizability variation at the origin of the population lens observed in the reference Cr3+:GSGG laser material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: to evaluate the effects of low-level laser therapy for perineal pain and healing after episiotomy. Design: a double-blind, randomised, controlled clinical trial comparing perineal pain scores and episiotomy healing in women treated with low-level laser therapy (LLLT) and with the simulation of the treatment. Setting: the study was conducted in the Birth Centre and rooming-in units of Amparo Maternal, a maternity service located in the city of Sao Paulo, Brazil. Participants: fifty-two postpartum women who had had mediolateral episiotomies during their first normal delivery were randomly divided into two groups of 26: an experimental group and a control group. Intervention: in the experimental group, the women were treated with LLLT. Irradiation was applied at three points directly on the episiotomy after the suture and in three postpartum sessions: up to 2 hrs postpartum, between 20 and 24 hrs postpartum and between 40 and 48 hrs postpartum. The LLLT was performed with diode laser, with a wavelength of 660 nm (red light), spot size of 0.04 cm(2), energy density of 3.8 J/cm(2), radiant power of 15 mW and 10 s per point, which resulted in an energy of 0.15 J per point and a total energy of 0.45 J per session. The control group participants also underwent three treatment sessions, but without the emission of radiation (simulation group), to assess the possible effects of placebo treatment. Main outcomes: perineal pain scores, rated on a scale from 0 to 10, were evaluated before and immediately after the irradiation in the three sessions. The healing process was assessed using the REEDA scale (Redness, Edema, Echymosis, Discharge Aproximation) before each laser therapy session and 15 and 20 days after the women's discharge. Findings: comparing the pain scores before and after the LLLT sessions, the experimental group presented a significant within-group reduction in mean pain scores after the second and third sessions (p=0.003 and p<0.001, respectively), and the control group showed a significant reduction after the first treatment simulation (p=0.043). However, the comparison of the perineal pain scores between the experimental and control groups indicated no statistical difference at any of the evaluated time points. There was no significant difference in perineal healing scores between the groups. All postpartum women approved of the low-level laser therapy. Conclusions: this pilot study showed that LLLT did not accelerate episiotomy healing. Although there was a reduction in perineal pain mean scores in the experimental group, we cannot conclude that the laser relieved perineal pain. This study led to the suggestion of a new research proposal involving another irradiation protocol to evaluate LLLT's effect on perineal pain relief. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the shear bond strength of repairs in porcelain conditioned with laser. Sixty porcelain discs were made and six groups were formed (n = 10): G1: conditioning with laser with potency 760 mW; G2: conditioning with laser with potency 760 mW and application of 37% phosphoric acid for 15 s; G3: conditioning with laser with potency 900 mW; G4: conditioning with laser with potency 900 mW and application of 37% phosphoric acid for 15 s; G5: application of 37% phosphoric acid for 15 s (group control) and G6: application of 10% hydrofluoric acid for 2 min. The composite resin was insert of incremental layers at the porcelain surface aided with a metal matrix, and photoactivation for 20 s each increment. The specimens were submitted to a thermal cycling by 1000 cycles of 30 s in each bath with temperature between 5 and 55 degrees C. After the thermal cycling, specimens were submitted to the shear bond strength. The results were evaluated statistically through analysis of variance and Tukey's tests with 5% significance. The averages and standard deviation founded were: G1, 11.25 (+/- 3.10); G2, 12.32 (+/- 2.65); G3, 14.02 (+/- 2.38); G4, 13.44 (+/- 2,07); G5, 9.91 (-/+ 2,18); G6, 12.74 (+/- 2.67). The results showed that the femtosecond laser produced a shear bond strength of repairs in porcelain equal to the hydrofluoric acid and significantly superior to the use of phosphoric acid. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.