10 resultados para invasiveness

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the histogenesis of the odontogenic myxoma (OM). Dental pulp stem cells could be candidate precursors of OM because both OM and the dental pulp share the same embryological origin: the dental papilla. For the purpose of comparing OM and stem cells, this study analyzed the expression of two proteins related to OM invasiveness (MMP-2 and hyaluronic acid) in human immature dental pulp stern cells (hIDPSCs). Three lineages of hIDPSCs from deciduous and permanent teeth were used in this study. Immunofluorescence revealed positive reactions for MMP-2 and hyaluronic acid (HA) in all hIDPSCs. MMP-2 appeared as dots throughout the cytoplasm, whereas HA appeared either as diffuse and irregular dots or as short fibrils throughout the cytoplasm and outside the cell bodies. The gene expression profile of each cell lineage was evaluated using RT-PCR analysis, and HA was expressed more intensively than MMP-2. HA expression was similar among the three hIDPSCs lineages, whereas MMP-2 expression was higher in DL-1 than in the other cell lines. The expression of proteins related to OM invasiveness in hIDPSCs could indicate that OM originates from dental pulp stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Prognosis of prostate cancer (PCa) is based mainly in histological aspects together with PSA serum levels that not always reflect the real aggressive potential of the neoplasia. The micro RNA (miRNA) mir-21 has been shown to regulate invasiveness in cancer through translational repression of the Metaloproteinase (MMP) inhibitor RECK. Our aim is to investigate the levels of expression of RECK and miR-21 in PCa comparing with classical prognostic factors and disease outcome and also test if RECK is a target of miR-21 in in vitro study using PCa cell line. Materials and methods: To determine if RECK is a target of miR-21 in prostate cancer we performed an in vitro assay with PCa cell line DU-145 transfected with pre-miR-21 and anti-miR-21. To determine miR-21 and RECK expression levels in PCa samples we performed quantitative real-time polymerase chain reaction (qRT-PCR). Results: The in vitro assays showed a decrease in expression levels of RECK after transfection with pre-miR-21, and an increase of MMP9 that is regulated by RECK compared to PCa cells treated with anti-miR-21. We defined three profiles to compare the prognostic factors. The first was characterized by miR-21 and RECK underexpression (N = 25) the second was characterized by miR-21 overexpression and RECK underexpression (N = 12), and the third was characterized by miR-21 underexpression and RECK overexpression (N = 16). From men who presented the second profile (miR-21 overexpression and RECK underexpression) 91.7% were staged pT3. For the other two groups 48.0%, and 46.7% of patients were staged pT3 (p = 0.025). Conclusions: Our results demonstrate RECK as a target of miR-21. We believe that miR-21 may be important in PCa progression through its regulation of RECK, a known regulator of tumor cell invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently emerged concept of cancer stem cell (CSC) has led to a new hypothesis on the basis for tumor progression. Basically, the CSC theory hypothesizes the presence of a hierarchically organized and relatively rare cell population, which is responsible for tumor initiation, self-renewal, and maintenance, in addition to accumulation of mutation and resistance to chemotherapy. CSCs have recently been described in breast cancer. Different genetic markers have been used to isolate breast CSCs, none of which have been correlated with the tumorigenicity or metastatic potential of the cells, limiting their precise characterization and clinical application in the development of therapeutic protocols. Here, we sought for subpopulations of CSCs by analyzing 10 judiciously chosen stem cell markers in a normal breast cell line (MCF10-A) and in four human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435, and Hs578-T) displaying different degrees of metastatic and invasiveness potential. We were able to identify two markers, which are differentially expressed in nontumorigenic versus tumor cells. The CD90 marker was highly expressed in the malignant cell lines. Interestingly, the CD14 molecule displayed higher expression levels in the nontumorigenic cell line. Therefore, we demonstrated that these two markers, which are more commonly used to isolate and characterize stem cells, are differentially expressed in breast tumor cells, when compared with nontumorigenic breast cells. (C) 2012 International Society for Advancement of Cytometry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alterations in the gene expression profile in epithelial cells during breast ductal carcinoma (DC) progression have been shown to occur mainly between pure ductal carcinoma in situ (DCIS) to the in situ component of a lesion with coexisting invasive ductal carcinoma (DCIS-IDC) implying that the molecular program for invasion is already established in the preinvasive lesion. For assessing early molecular alterations in epithelial cells that trigger tumorigenesis and testing them as prognostic markers for breast ductal carcinoma progression, we analyzed, by reverse transcription-quantitative polymerase chain reaction, eight genes previously identified as differentially expressed between epithelial tumor cells populations captured from preinvasive lesions with distinct malignant potential, pure DCIS and the in situ component of DCIS-IDC. ANAPC13 and CLTCL1 down-regulation revealed to be early events of DC progression that anticipated the invasiveness manifestation. Further down-regulation of ANAPC13 also occurred after invasion appearance and the presence of the protein in invasive tumor samples was associated with higher rates of overall and disease-free survival in breast cancer patients. Furthermore, tumors with low levels of ANAPC13 displayed increased copy number alterations, with significant gains at 1q (1q23.1-1q32.1), 8q, and 17q (17q24.2), regions that display common imbalances in breast tumors, suggesting that down-regulation of ANAPC13 contributes to genomic instability in this disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Sepsis is a common condition encountered in hospital environments. There is no effective treatment for sepsis, and it remains an important cause of death at intensive care units. This study aimed to discuss some methods that are available in clinics, and tests that have been recently developed for the diagnosis of sepsis. Methods: A systematic review was performed through the analysis of the following descriptors: sepsis, diagnostic methods, biological markers, and cytokines. Results: The deleterious effects of sepsis are caused by an imbalance between the invasiveness of the pathogen and the ability of the host to mount an effective immune response. Consequently, the host's immune surveillance fails to eliminate the pathogen, allowing it to spread. Moreover, there is a pro-inflammatory mediator release, inappropriate activation of the coagulation and complement cascades, leading to dysfunction of multiple organs and systems. The difficulty achieve total recovery of the patient is explainable. There is an increased incidence of sepsis worldwide due to factors such as aging population, larger number of surgeries, and number of microorganisms resistant to existing antibiotics. Conclusion: The search for new diagnostic markers associated with increased risk of sepsis development and molecules that can be correlated to certain steps of sepsis is becoming necessary. This would allow for earlier diagnosis, facilitate patient prognosis characterization, and prediction of possible evolution of each case. All other markers are regrettably constrained to research units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laryngeal squamous cell carcinoma is one of the most common malignant neoplasms of the head and neck. In Brazil, laryngeal tumors represent 2% of all cancers and are associated with approximately 3,000 deaths annually. Human papillomavirus (HPV) has been reported to play an important role in the etiology of laryngeal cancer. The aim of the present study was to evaluate the expression of p53, p27, and Mdm2 in laryngeal carcinomas. Sixty-three larynx biopsies were selected for the study, including 9 in situ laryngeal carcinomas, 27 laryngeal carcinomas without metastasis and 27 laryngeal carcinomas with metastasis. Twenty-seven cervical lymph nodes from patients with metastatic lesions were also evaluated. The expression levels of p53, p27, and Mdm2 were assessed by immunohistochemistry using a computer-assisted system. HPV detection and typing were performed using PCR, and the HPV types that were evaluated included HPV 6, 11, 16, 18, 31 and 33. Out of 63 patients, 53 (84.1%) were positive for beta-globin (internal control), and 10 (15.9%) were beta-globin negative and therefore excluded from the evaluation. Thus, 7 (13.2%) out of 53 patients were HPV positive, and 46 (86.8%) out of 53 patients were HPV negative. Statistically significant differences (p < 0.05) in Mdm2 expression levels were observed in the in situ laryngeal carcinoma samples compared with the laryngeal carcinoma samples with metastasis. No statistically significant differences (p > 0.05) in either p53 or p27 expression levels were detected. These findings suggest that Mdm2 may be associated with the invasiveness and aggressiveness of laryngeal carcinomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under many circumstances, the host constituents that are found in the tumor microenvironment support a malignancy network and provide the cancer cells with advantages in proliferation, invasiveness and metastasis establishment at remote organs. It is known that Toll like receptors (TLRs) are expressed not only on immune cells but also on cancer cells and it has suggested a deleterious role for TLR3 in inflammatory disease. Hypothesizing that altered IFN gamma signaling may be a key mechanism of immune dysfunction common to cancer as well CXCR4 is overexpressed among breast cancer patients, the mRNA expression of TLR3, CXCR4 and IFN gamma in breast cancer tumor tissues was investigated. No statistically significant differences in the expression of CXCR4 mRNA, IFN gamma and TLR3 between healthy and tumor tissues was observed, however, it was verified a positive correlation between mRNA relative expression of TLR3 and CXCR4 (p < 0.001), and mRNA relative expression of TLR3 was significantly increased in breast cancer tumor tissue when compared to healthy mammary gland tissue among patients expressing high IFN gamma (p = 0.001). Since the tumor microenvironment plays important roles in cancer initiation, growth, progression, invasion and metastasis, it is possible to propose that an overexpression of IFN gamma mRNA due to the pro-inflammatory microenvironment can lead to an up-regulation of CXCR4 mRNA and consequently to an increased TLR3 mRNA expression even among nodal negative patients. In the future, a comprehensive study of TLR3, CXCR4 and IFN gamma axis in primary breast tumors and corresponding healthy tissues will be crucial to further understanding of the cancer network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-beta 1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods: The mRNA expression levels of TGF-beta isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-beta 1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results: In general, TGF-beta 2, T beta RI and T beta RII are over-expressed in more aggressive cells, except for T beta RI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-beta 1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-beta 1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-beta 1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-beta 1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-beta 1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-beta 1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion: Altogether, our results support that TGF-beta 1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-beta 1 still remains a promising target for breast cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-β1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods The mRNA expression levels of TGF-β isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-β1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results In general, TGF-β2, TβRI and TβRII are over-expressed in more aggressive cells, except for TβRI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-β1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-β1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-β1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-β1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-β1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-β1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion Altogether, our results support that TGF-β1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-β1 still remains a promising target for breast cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Sepsis is a common condition encountered in hospital environments. There is no effective treatment for sepsis, and it remains an important cause of death at intensive care units. This study aimed to discuss some methods that are available in clinics, and tests that have been recently developed for the diagnosis of sepsis. METHODS: A systematic review was performed through the analysis of the following descriptors: sepsis, diagnostic methods, biological markers, and cytokines. RESULTS: The deleterious effects of sepsis are caused by an imbalance between the invasiveness of the pathogen and the ability of the host to mount an effective immune response. Consequently, the host's immune surveillance fails to eliminate the pathogen, allowing it to spread. Moreover, there is a pro-inflammatory mediator release, inappropriate activation of the coagulation and complement cascades, leading to dysfunction of multiple organs and systems. The difficulty achieve total recovery of the patient is explainable. There is an increased incidence of sepsis worldwide due to factors such as aging population, larger number of surgeries, and number of microorganisms resistant to existing antibiotics. CONCLUSION: The search for new diagnostic markers associated with increased risk of sepsis development and molecules that can be correlated to certain steps of sepsis is becoming necessary. This would allow for earlier diagnosis, facilitate patient prognosis characterization, and prediction of possible evolution of each case. All other markers are regrettably constrained to research units.