5 resultados para instrumented sphere

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the analysis of instrumented indentation data, it is common practice to incorporate the combined moduli of the indenter (E-i) and the specimen (E) in the so-called reduced modulus (E-r) to account for indenter deformation. Although indenter systems with rigid or elastic tips are considered as equivalent if E-r is the same, the validity of this practice has been questioned over the years. The present work uses systematic finite element simulations to examine the role of the elastic deformation of the indenter tip in instrumented indentation measurements and the validity of the concept of the reduced modulus in conical and pyramidal (Berkovich) indentations. It is found that the apical angle increases as a result of the indenter deformation, which influences in the analysis of the results. Based upon the inaccuracies introduced by the reduced modulus approximation in the analysis of the unloading segment of instrumented indentation applied load (P)-penetration depth (delta) curves, a detailed examination is then conducted on the role of indenter deformation upon the dimensionless functions describing the loading stages of such curves. Consequences of the present results in the extraction of the uniaxial stress-strain characteristics of the indented material through such dimensional analyses are finally illustrated. It is found that large overestimations in the assessment of the strain hardening behavior result by neglecting tip compliance. Guidelines are given in the paper to reduce such overestimations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, different methods to estimate the value of thin film residual stresses using instrumented indentation data were analyzed. This study considered procedures proposed in the literature, as well as a modification on one of these methods and a new approach based on the effect of residual stress on the value of hardness calculated via the Oliver and Pharr method. The analysis of these methods was centered on an axisymmetric two-dimensional finite element model, which was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. Simulations were conducted varying the level of film residual stress, film strain hardening exponent, film yield strength, and film Poisson's ratio. Different ratios of maximum penetration depth h(max) over film thickness t were also considered, including h/t = 0.04, for which the contribution of the substrate in the mechanical response of the system is not significant. Residual stresses were then calculated following the procedures mentioned above and compared with the values used as input in the numerical simulations. In general, results indicate the difference that each method provides with respect to the input values depends on the conditions studied. The method by Suresh and Giannakopoulos consistently overestimated the values when stresses were compressive. The method provided by Wang et al. has shown less dependence on h/t than the others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, mesoporous titania is prepared by templating latex sphere arrays with four different sphere diameters at the micrometric scale (phi > 1 mu m). The mesoporous titania homogeneously covers the latex spheres and substrate, forming a thin coating characterized by N-2 adsorption isotherm, small angle X-rays scattering, atomic force, field emission and transmission electronic microscopies. Mesoporous titania has been templated into different shapes such as hollow particles and monoliths according to the amount of sol used to fill the voids of the close packed latex spheres. Titania topography strongly depends on the adsorption of polymeric segments over latex spheres surface, which could be decreased by changing the dimensions of latex spheres (phi = 9.5 mu m) generating a lamellar architecture. Thus, micrometric latex sphere arrays can be used to achieve new surface patterns for mesoporous materials via a fast and inexpensive chemical route for construction of functional devices in different technological fields such as energy conversion, inclusion chemistry and biomaterials. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the action of a weighted Fourier–Laplace transform on the functions in the reproducing kernel Hilbert space (RKHS) associated with a positive definite kernel on the sphere. After defining a notion of smoothness implied by the transform, we show that smoothness of the kernel implies the same smoothness for the generating elements (spherical harmonics) in the Mercer expansion of the kernel. We prove a reproducing property for the weighted Fourier–Laplace transform of the functions in the RKHS and embed the RKHS into spaces of smooth functions. Some relevant properties of the embedding are considered, including compactness and boundedness. The approach taken in the paper includes two important notions of differentiability characterized by weighted Fourier–Laplace transforms: fractional derivatives and Laplace–Beltrami derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.