6 resultados para in vitro nutrition
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Rapid in vitro methods for measuring digestibility may be useful in analysing aqua feeds if the extent and limits of their application are clearly defined. The pH-stat protein digestibility routine with shrimp hepatopancreas enzymes was previously related to apparent protein digestibility with juvenile Litopenaeus vannamei fed diets containing different protein ingredients. The potential of the method to predict culture performance of shrimp fed six commercial feeds (T3, T4, T5, T6, T7 and T8) with 350 g kg(-1) declared crude-protein content was assessed. The consistency of results obtained using hepatopancreas enzyme extracts from either pond or clear water-raised shrimp was further verified in terms of reproducibility and possible diet history effects upon in vitro outputs. Shrimps were previously acclimated and then maintained over 56 days (initial mean weight 3.28 g) on each diet in 500-L tanks at 114 ind m(-2), clear water closed system with continuous renewal and mechanical filtering (50 mu m), with four replicates per treatment. Feeds were offered four times daily (six days a week) delivered in trays at feeding rates ranging from 4.0% to 7.0% of stocked shrimp biomass. Feed was accessible to shrimp 4 h daily for 1-h feeding period after which uneaten feed was recovered. Growth and survival were determined every 14 days from a sample of 16 individuals per tank. Water quality was monitored daily (pH, temperature and salinity) and managed by water back flushing filter cleaning every 7-10 days. Feeds were analysed for crude protein, gross energy, amino acids and pepsin digestibility. In vitro pH-stat degree of protein hydrolysis (DH%) was determined for each feed using hepatopancreas enzyme extracts from experimental (clear water) or pond-raised shrimp. Feeds resulted in significant differences in shrimp performance (P < 0.05) as seen by the differences in growth rates (0.56-0.98 g week(-1)), final weight and feed conversion ratio (FCR). Shrimp performance and in vitro DH% with pond-raised shrimp enzymes showed significant correlation (P < 0.05) for yield (R-2 = 0.72), growth rates (R-2 = 0.72-0.80) and FCR (R-2 = -0.67). Other feed attributes (protein : energy ratio, amino acids, true protein, non-protein nitrogen contents and in vitro pepsin digestibility) showed none or limited correlation with shrimp culture performance. Additional correlations were found between growth rates and methionine (R-2 = 0.73), FCR and histidine (R-2 = -0.60), and DH% and methionine or methionine+cystine feed contents (R-2 = 0.67-0.92). pH-stat assays with shrimp enzymes generated reproducible DH% results with either pond (CV <= 6.5%) or clear water (CV <= 8.5%) hepatopancreas enzyme sources. Moreover, correlations between shrimp growth rates and feed DH% were significant regardless of the enzyme origin (pond or clear water-raised shrimp) and showed consistent R-2 values. Results suggest the feasibility of using standardized hepatopancreas enzyme extracts for in vitro protein digestibility.
Resumo:
Intervention strategies regarding the biofortification of orange-fleshed sweet potato, which is a rich source of carotenoids for combating vitamin A deficiency, are being developed in Brazil. This study was conducted to evaluate the concentrations of individual carotenoids, total phenolic compounds and antioxidant capacity in the roots of four biofortified sweet potato cultivars that were raw or processed by four common heat treatments. HPLC, Folin-Ciocalteu, DPPH and ABTS assays were used. All cultivars showed high levels of carotenoids in raw roots, predominantly all-trans-beta-carotene (79.1-128.5 mg.100 g(-1) DW), suggesting a high estimated vitamin A activity. The CNPH 1194 cultivar reported carotenoids values highest than those of other cultivars (p < 0.05). The total phenolic compounds varied among cultivars and heat treatments (0.96-2.05 mg.g(-1) DW). In most cases, the heat treatments resulted in a significant decrease in the carotenoids and phenolic compounds contents as well as antioxidant capacity. Processing of flour presented the greatest losses of major carotenoids and phenolics. The phenolic compounds showed more stability than carotenoids after processing. There were significant correlations between the carotenoids and phenolic compounds and the antioxidant capacity.
Resumo:
Two experiments in vitro were conducted to evaluate four Egyptian forage legume browses, i.e., leaves of prosopis (Prosopis juliflora), acacia (Acacia saligna), atriplex (A triplex halimus), and leucaena (Leucaena leucocephala), in comparison with Tifton (Cynodon sp.) grass hay for their gas production, methanogenic potential, and ruminal fermentation using a semi-automatic system for gas production (first experiment) and for ruminal and post ruminal protein degradability (second experiment). Acacia and leucaena showed pronounced methane inhibition compared with Tifton, while prosopis and leucaena decreased the acetate:propionate ratio (P<0.01). Acacia and leucaena presented a lower (P<0.01) ruminal NH3-N concentration associated with the decreasing (P<0.01) ruminal protein degradability. Leucaena, however, showed higher (P<0.01) intestinal protein digestibility than acacia. This study suggests that the potential methanogenic properties of leguminous browses may be related not only to tannin content, but also to other factors.
Resumo:
Leucaena leucocephala (LEU) and three under-utilized tanniferous legumes, Styzolobium aterrimum L. (STA), Styzolobium deeringianum (STD), and Mimosa caesalpiniaefolia Benth (MIC) were chemically characterized and the biological activity of tannins was evaluated using in vitro simulated ruminal fermentation through tannin-binding polyethylene glycol (PEG) and compared with a non-tanniferous tropical grass hay, Cynodon spp. (CYN). The Hohenheim gas test was used and gas production (GP) was recorded at 4, 8, 12, 24, 32, 48, 56, 72, 80, and 96 h incubation with and without PEG. Kinetic parameters were estimated by an exponential model. STA, STD, and LEU contained higher (P < 0.05) crude protein than MIC, which had greater neutral detergent fibre and acid detergent fibre. Total phenols, total tannins, and condensed tannins (CT) were consistently the highest in MIC. Gas production was the lowest from MIC (P < 0.05) and the highest in LEU and STA. MIC + PEG largely reduced (P < 0.05) the lag phase and the fractional rate of fermentation and increased potential GP. Kinetic parameters of STA + PEG and LEU + PEG were not affected. LEU + PEG produced greater gas increment (P < 0.05) than STD + PEG, although both legumes had the same CT. All legumes except MIC were more extensively degraded than CYN. However, fermentation of the legumes was differently affected by the presence and proportions of CT, indigestible fibre or both.
Resumo:
The purpose of present review is to describe the effect of leucine supplementation on skeletal muscle proteolysis suppression in both in vivo and in vitro studies. Most studies, using in vitro methodology, incubated skeletal muscles with leucine with different doses and the results suggests that there is a dose-dependent effect. The same responses can be observed in in vivo studies. Importantly, the leucine effects on skeletal muscle protein synthesis are not always connected to the inhibition of skeletal muscle proteolysis. As a matter of fact, high doses of leucine incubation can promote suppression of muscle proteolysis without additional effects on protein synthesis, and low leucine doses improve skeletal muscle protein ynthesis but have no effect on skeletal muscle proteolysis. These research findings may have an important clinical relevancy, because muscle loss in atrophic states would be reversed by specific leucine supplementation doses. Additionally, it has been clearly demonstrated that leucine administration suppresses skeletal muscle proteolysis in various catabolic states. Thus, if protein metabolism changes during different atrophic conditions, it is not surprising that the leucine dose-effect relationship must also change, according to atrophy or pathological state and catabolism magnitude. In conclusion, leucine has a potential role on attenuate skeletal muscle proteolysis. Future studies will help to sharpen the leucine efficacy on skeletal muscle protein degradation during several atrophic states.
Resumo:
The in vitro organogenesis of woody species plays an essential role in the improvement of forest products by providing saplings with high commercial value. Furthermore, mineral nutrition plays an important role in the induction of organogenic responses. The objective of this study was to evaluate the effects of boron and calcium in the organogenesis of nodal segments from seedlings of Eucalyptus grandis growing under in vitro conditions. The concentration of boron and calcium in MS medium was modified to induce organogenic responses in 45-day-old nodal segments used as explants. After 60 days, the fresh weight, dry weight, ratio of fresh and dry weight, relative water content and relative matter content accumulated by the explants were evaluated. The concentrations of boron and calcium in the culture medium influenced the in vitro organogenic control of Eucalyptus grandis. Reduced combinations of boron and calcium induced callus formation and dry matter accumulation in the explants. A boron concentration of 100% (1.10 mg L-1) combined with 100% (119.950 mg L-1) and 200% (239.900 mg L-1) of calcium, and 200% (2.20 mg L-1) of boron combined with 100% (119.950 mg L-1) of calcium allowed the induction of well-developed buds, which can be used for the regeneration of micro-plants.