22 resultados para honey-tree species
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We tested the early performance of 16 native early-, mid-, and late-successional tree species in response to four intensities of grass removal in an abandoned cattle pasture dominated by the introduced, invasive African grass, Cynodon plectostachyus, within the Lacandon rainforest region, southeast Mexico. The increase in grass removals significantly improved the performance of many species, especially of early-and mid-successional species, while performance of late-successional species was relatively poor and did not differ significantly among treatments. Good site preparation and at least one additional grass removal four months after seedling transplant were found to be essential; additional grass removals led to improved significantly performance of saplings in most cases. In order to evaluate the potential of transplanting tree seedlings successfully in abandoned tropical pastures, we developed a "planting risk index", combining field performance measurements and plantation cost estimations. Our results showed a great potential for establishing restoration plantings with many early-and mid-successional species. Although planting risk of late-successional species was considered high, certain species showed some possibilities of acclimation after 18 months and should be considered in future plantation arrangements in view of their long-term contributions to biodiversity maintenance and also to human welfare through delivery of ecosystem services. Conducting a planting risk analysis can help avoid failure of restoration strategies involving simultaneous planting of early-, mid-, and late-successional tree species. This in turn will improve cost-effectiveness of initial interventions in large-scale, long-term restoration programs.
Resumo:
This study extends the current knowledge regarding the use of plants for the passive accumulation of anthropogenic PAHs that are present in the atmospheric total suspended particles (TSP) in the tropics and sub-tropics. It is of major relevance because the anthropic emissions of TSP containing PAHs are significant in these regions, but their monitoring is still scarce. We compared the biomonitor efficiency of Lolium multiflorum 'Lema' and tropical tree species (Tibouchina pukka and Psidium guajava 'Paluma') that were growing in an intensely TSP-polluted site in Cubatao (SE Brazil), and established the species with the highest potential for alternative monitoring of PAHs. PAHs present in the TSP indicated that the region is impacted by various emission sources. L. multiflorum showed a greater efficiency for the accumulation of PAH compounds on their leaves than the tropical trees. The linear regression between the logBCF and logKoa revealed that L. multiflorum is an efficient biomonitor of the profile of light and heavy PAHs present in the particulate phase of the atmosphere during dry weather and mild temperatures. The grass should be used only for indicating the PAHs with higher molecular weight in warmer and wetter periods. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The rainforest of Mexico has been degraded and severely fragmented, and urgently require restoration. However, the practice of restoration has been limited by the lack of species-specific data on survival and growth responses to local environmental variation. This study explores the differential performance of 14 wet tropical early-, mid- or late-successional tree species that were grown in two abandoned pastures with contrasting land-use histories. After 18 months, seedling survival and growth of at least 7 of the 14 tree species studied were significantly higher in the site with a much longer history of land use (site 2). Saplings of the three early-successional species showed exceptional growth rates. However, differences in performance were noted in relation to the differential soil properties between the experimental sites. Mid-successional species generally showed slow growth rates but high seedling survival, whereas late-successional species exhibited poor seedling survival at both the study sites. Stepwise linear regressions revealed that the species integrated response index combining survivorship and growth measurements, was influenced mostly by differences in soil pH between the two abandoned pastures. Our results suggest that local environmental variation among abandoned pastures of contrasting land-use histories influences sapling survival and growth. Furthermore, the similarity of responses among species with the same successional status allowed us to make some preliminary site and species-specific silvicultural recommendations. Future field experiments should extend the number of species and the range of environmental conditions to identify site generalists or more narrowly adapted species, that we would call sensitive.
Resumo:
Premise of the study: We developed and characterized nuclear microsatellite markers for Anadenanthera colubrina, a tropical tree species widely distributed in South America. Methods and Results: Leaf samples of mature A. colubrina trees, popularly called "angico," were collected from an area that is greatly impacted by agricultural practices in the region of Ribeirao Preto in Sao Paulo State in southeastern Brazil. Twenty simple sequence repeat (SSR) markers were developed, 14 of which had polymorphic loci. A total of 96 alleles were detected with an average of 6.86 alleles per polymorphic locus. The expected heterozygosity, calculated at polymorphic loci, ranged from 0.18 to 0.83. Finally, we demonstrated that 18 loci were cross-amplified in A. peregrina. Conclusions: A total of 14 polymorphic markers suggest a high potential for genetic diversity, gene flow, and mating system analyses in A. colubrina.
Resumo:
The Brazilian Atlantic forest is considered one of the world's biodiversity conservation hotspot. Today there is less than ten percent remaining. Therefore it is necessary to restore these ecosystems. There are many ways of achieving restoration's main goals, but there is a lack of ecological studies that analyzes tree species richness as a variable. Thus, this study's goal is to investigate if there is a difference between a forest restoration in a gradient of tree species richness that varies from 20, 60 to 120 species, by using the litterfall as an indicator. Every month, for one year the forest litter was collected from litter traps that were previously installed. Results revealed that stands produced litterfall by the increasing gradient of species was of 5,370, 5,909 and 6,432 kg ha(-1) yr(-1). The statistical analyses revealed no significant difference among them. Therefore this six-year-old forest restoration plantation shows no difference on the litter production by the tree species richness.
Resumo:
For many tree species, mating system analyses have indicated potential variations in the selfing rate and paternity correlation among fruits within individuals, among individuals within populations, among populations, and from one flowering event to another. In this study, we used eight microsatellite markers to investigate mating systems at two hierarchical levels (fruits within individuals and individuals within populations) for the insect pollinated Neotropical tree Tabebuia roseo-alba. We found that T. roseo-alba has a mixed mating system with predominantly outcrossed mating. The outcrossing rates at the population level were similar across two T. roseo-alba populations; however, the rates varied considerably among individuals within populations. The correlated paternity results at different hierarchical levels showed that there is a high probability of shared paternal parentage when comparing seeds within fruits and among fruits within plants and full-sibs occur in much higher proportion within fruits than among fruits. Significant levels of fixation index were found in both populations and biparental inbreeding is believed to be the main cause of the observed inbreeding. The number of pollen donors contributing to mating was low. Furthermore, open-pollinated seeds varied according to relatedness, including half-sibs, full-sibs, self-sibs and self- half-sibs. In both populations, the effective population size within a family (seed-tree and its offspring) was lower than expected for panmictic populations. Thus, seeds for ex situ conservation genetics, progeny tests and reforestation must be collected from a large number of seed-trees to guarantee an adequate effective population in the sample.
Resumo:
Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO2 efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (delta B-w) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, delta B-w/ANPP and delta B-w/GPP. In contrast, the 28% lower delta B-w in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.
Resumo:
In tropical forests, the environmental heterogeneity can provide niche partitioning at local scales and determine the diversity and plant species distribution. Thus, this study aimed to investigate the variations of tree species structure and distribution in response to relief and soil profile features in a portion of the largest remnant of Brazilian Atlantic rain forest. All trees >= 5 cm diameter at breast height were recorded in two 0.99 ha plots. Topographic survey and a soil characterization were accomplished in both plots. Topsoil samples (0-20 cm) were taken from 88 quadrats and analyzed for chemical and particle size properties. Differences for both diversity and tree density were identified among three kinds of soils. A canonical correspondence analysis (CCA) indicated that the specific abundance varied among the three kinds of soils mapped: a shallow Udept - Orthent / Aquent gradient, probably due to differences in soil drainage. Nutrient content was less likely to affect tree species composition and distribution than relief, pH, Al3+, and soil texture. Some species were randomly distributed and did not show restriction to relief and soil properties. However, preferences in niche occupation detected in this study, derived from the catenary environments found, rise up as an important explanation for the high tree species diversity in tropical forests.
Resumo:
Regeneration microsites are characterized by diverse combinations of attributes which assure the best conditions for seed germination and seedling establishment. By understanding these attributes, we can contribute to determining better management methodologies for reestablishing ecological process in sites under restoration. Thus, we sought to characterize and differentiate the micro-site conditions of restoration plantings to indentify likely physical-chemical limitations for the establishment of native tree species in the forest understory. This study was carried out in reforestation plantings with different ages (10, 22 and 55 years). The physical-chemical characterization of the micro-site of regeneration of the study areas was carried out by evaluating the soil compression level, porosity, humidity, organic matter and nutrients content and granulometry, as well as litter dry mass and canopy cover. An increase on the canopy cover and soil porosity, humidity, clay and organic matter content were observed in the oldest restored areas, as well as a decrease in soil compression. Thus, these findings demonstrated that the evaluated microsite properties are in process of restoration. Therefore, microsite conditions for seedling establishment become even more similar to reference ecosystems as restoration planting evolve.
Resumo:
Este trabalho resume os dados de florística e fitossociologia de 11, das 14 parcelas de 1 ha, alocadas ao longo do gradiente altitudinal da Serra do Mar, São Paulo, Brasil. As parcelas começam na cota 10 m (Floresta de Restinga da Praia da Fazenda, município de Ubatuba) e estão distribuídas até a cota 1100 m (Floresta Ombrófila Densa Montana da Trilha do rio Itamambuca, município de São Luis do Paraitinga) abrangendo os Núcleos Picinguaba e Santa Virgínia do Parque Estadual da Serra do Mar. Na Restinga o solo é Neossolo Quartzarênico francamente arenoso, enquanto que na encosta o solo é um Cambisolo Háplico Distrófico argilo-arenoso, sendo que todas as parcelas apresentaram solo ácido (pH 3 – 4) com alta diluição de nutrientes e alta saturação de alumínio. Na Restinga e no sopé da encosta o clima é Tropical/Subtropical Úmido (Af/Cfa), sem estação seca, com precipitação média anual superior a 2.200 mm e temperatura média anual de 22 °C. Subindo a encosta mantêm-se a média de precipitação, mas há um gradativo resfriamento, de forma que a 1.100 m o clima é Subtropical Úmido (Cfa/Cfb), sem estação seca, com temperatura média anual de 17 °C. Destaca-se ainda que, quase diariamente, a parte superior da encosta, geralmente acima de 400 m, é coberta por uma densa neblina. Nas 14 parcelas foram marcados, medidos e amostrados 21.733 indivíduos com DAP ≥ 4,8 cm, incluindo árvores, palmeiras e fetos arborescentes. O número médio de indivíduos amostrados nas 14 parcelas foi de 1.264 ind.ha–1 (± 218 EP de 95%). Dentro dos parâmetros considerados predominaram as árvores (71% FOD Montana a 90% na Restinga), seguidas de palmeiras (10% na Restinga a 25% na FOD Montana) e fetos arborescentes (0% na Restinga a 4% na FOD Montana). Neste aspecto destaca-se a FOD Terras Baixas Exploradas com apenas 1,8% de palmeiras e surpreendentes 10% de fetos arborescentes. O dossel é irregular, com altura variando de 7 a 9 m, raramente as árvores emergentes chegam a 18 m, e a irregularidade do dossel permite a entrada de luz suficiente para o desenvolvimento de centenas de espécies epífitas. Com exceção da FOD Montana, onde o número de mortos foi superior a 5% dos indivíduos amostrados, nas demais fitofisionomias este valor ficou abaixo de 2,5%. Nas 11 parcelas onde foi realizado o estudo florístico foram encontradas 562 espécies distribuídas em 195 gêneros e 68 famílias. Apenas sete espécies – Euterpe edulis Mart. (Arecaceae), Calyptranthes lucida Mart. ex DC. e Marlierea tomentosa Cambess (ambas Myrtaceae), Guapira opposita (Vell.) Reitz (Nyctaginaceae), Cupania oblongifolia Mart. (Sapindaceae) e as Urticaceae Cecropia glaziovii Snethl. e Coussapoa microcarpa (Schott) Rizzini – ocorreram da Floresta de Restinga à FOD Montana, enquanto outras 12 espécies só não ocorreram na Floresta de Restinga. As famílias com o maior número de espécies são Myrtaceae (133 spp), Fabaceae (47 spp), 125 Fitossociologia em parcelas permanentes de Mata Atlântica http://www.biotaneotropica.org.br/v12n1/pt/abstract?article+bn01812012012 http://www.biotaneotropica.org.br Biota Neotrop., vol. 12, no. 1 Introdução A Mata Atlântica sensu lato (Joly et al. 1999) é a segunda maior floresta tropical do continente americano (Tabarelli et al. 2005). A maior parte dos Sistemas de Classificação da vegetação brasileira reconhece que no Domínio Atlântico (sensu Ab’Saber 1977) esse bioma pode ser dividido em dois grandes grupos: a Floresta Ombrófila Densa, típica da região costeira e das escarpas serranas com alta pluviosidade (Mata Atlântica – MA – sensu stricto), e a Floresta Estacional Semidecidual, que ocorre no interior, onde a pluviosidade, além de menor, é sazonal. Na região costeira podem ocorrer também Manguezais (Schaeffer-Novelli 2000), ao longo da foz de rios de médio e grande porte, e as Restingas (Scarano 2009), crescendo sobre a planície costeira do quaternário. No topo das montanhas, geralmente acima de 1500 m, estão os Campos de Altitude (Ribeiro & Freitas 2010). Em 2002, a Fundação SOS Mata Atlântica em parceria com o INPE (Instituto..., 2002) realizaram um levantamento que indica que há apenas 7,6% da cobertura original da Mata Atlântica (s.l.). Mais recentemente Ribeiro et al. (2009) refinaram a estimativa incluindo fragmentos menores, que não haviam sido contabilizados, e concluíram que resta algo entre 11,4 e 16% da área original. Mesmo com esta fragmentação, o mosaico da Floresta Atlântica brasileira possui um dos maiores níveis de endemismos do mundo (Myers et al. 2000) e cerca da metade desses remanescentes de grande extensão estão protegidos na forma de Unidades de Conservação (Galindo & Câmara 2005). Entre os dois centros de endemismo reconhecidos para a MA (Fiaschi & Pirani 2009), o bloco das regiões sudeste/sul é o que conserva elementos da porção sul de Gondwana (Sanmartin & Ronquist 2004), tido como a formação florestal mais antiga do Brasil (Colombo & Joly 2010). Segundo Hirota (2003), parte dos remanescentes de MA está no estado de São Paulo, onde cerca de 80% de sua área era coberta por florestas (Victor 1977) genericamente enquadradas como Mata Atlântica “sensu lato” (Joly et al. 1999). Dados de Kronka et al. (2005) mostram que no estado restam apenas 12% de área de mata e menos do que 5% são efetivamente florestas nativas pouco antropizadas. Nos 500 anos de fragmentação e degradação das formações naturais, foram poupadas apenas as regiões serranas, principalmente a fachada da Serra do Mar, por serem impróprias para práticas agrícolas. Usando o sistema fisionômico-ecológico de classificação da vegetação brasileira adotado pelo IBGE (Veloso et al. 1991), a Floresta Ombrófila Densa, na área de domínio da Mata Atlântica, foi subdividida em quatro faciações ordenadas segundo a hierarquia topográfica, que refletem fisionomias de acordo com as variações das faixas altimétricas e latitudinais. No estado de São Paulo, na latitude entre 16 e 24 °S temos: 1) Floresta Ombrófila Densa das Terras Baixas - 5 a 50 m de altitude; 2) Floresta Ombrófila Densa Submontana – no sopé da Serra do Mar, com cotas de altitude variando entre 50 e 500 m; 3) Floresta Ombrófila Densa Montana – recobrindo a encosta da Serra do Mar propriamente dita, em altitudes que variam de 500 a 1.200 m; 4) Floresta Ombrófila Densa Altimontana – ocorrendo no topo da Serra do Mar, acima dos limites estabelecidos para a formação montana, onde a vegetação praticamente deixa de ser arbórea, pois predominam os campos de altitude. Nas últimas três décadas muita informação vem sendo acumulada sobre a composição florística e a estrutura do estrato arbóreo dos remanescentes florestais do estado, conforme mostram as revisões de Oliveira-Filho & Fontes (2000) e Scudeller et al. (2001). Em florestas tropicais este tipo de informação, assim como dados sobre a riqueza de espécies, reflete não só fatores evolutivos e biogeográficos, como também o histórico de perturbação, natural ou antrópica, das respectivas áreas (Gentry 1992, Hubbell & Foster 1986). A síntese dessas informações tem permitido a definição de unidades fitogeográficas com diferentes padrões de riqueza de espécies e apontam para uma diferenciação, entre as florestas paulistas, no sentido leste/oeste (Salis et al. 1995, Torres et al. 1997, Santos et al. 1998). Segundo Bakker et al. (1996) um método adequado para acompanhar e avaliar as mudanças na composição das espécies e dinâmica da floresta ao longo do tempo é por meio de parcelas permanentes (em inglês Permanent Sample Plots –PSPs). Essa metodologia tem sido amplamente utilizada em estudos de longa duração em florestas tropicais, pois permite avaliar a composição e a estrutura florestal e monitorar sua mudança no tempo (Dallmeier 1992, Condit 1995, Sheil 1995, Malhi et al. 2002, Lewis et al. 2004). Permite avaliar também as consequências para a floresta de problemas como o aquecimento global e a poluição atmosférica (Bakker et al. 1996). No Brasil os projetos/programas que utilizam a metodologia de Parcelas Permanentes tiveram origem, praticamente, com o Projeto Rubiaceae (49) e Lauraceae (49) ao longo de todo gradiente da FOD e Monimiaceae (21) especificamente nas parcelas da FOD Montana. Em termos de número de indivíduos as famílias mais importantes foram Arecaceae, Rubiaceae, Myrtaceae, Sapotaceae, Lauraceae e na FOD Montana, Monimiaceae. Somente na parcela F, onde ocorreu exploração de madeira entre 1960 e 1985, a abundância de palmeiras foi substituída pelas Cyatheaceae. O gradiente estudado apresenta um pico da diversidade e riqueza nas altitudes intermediárias (300 a 400 m) ao longo da encosta (índice de Shannon-Weiner - H’ - variando de 3,96 a 4,48 nats.indivíduo–1). Diversas explicações para este resultado são apresentadas neste trabalho, incluindo o fato dessas altitudes estarem nos limites das expansões e retrações das diferentes fitofisionomias da FOD Atlântica durante as flutuações climáticas do Pleistoceno. Os dados aqui apresentados demonstram a extraordinária riqueza de espécies arbóreas da Floresta Ombrófila Densa Atlântica dos Núcleos Picinguaba e Santa Virgínia do Parque Estadual da Serra do Mar, reforçando a importância de sua conservação ao longo de todo o gradiente altitudinal. A diversidade desta floresta justifica também o investimento de longo prazo, através de parcelas permanentes, para compreender sua dinâmica e funcionamento, bem como monitorar o impacto das mudanças climáticas nessa vegetação.
Resumo:
The cyanobacterial community colonizing phyllosphere in a well-preserved Brazilian mangrove ecosystem was assessed using cultivation-independent molecular approaches. Leaves of trees that occupy this environment (Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa) were collected along a transect beginning at the margin of the bay and extending upland. The results demonstrated that the phyllosphere of R.similar to mangle and L.similar to racemosa harbor similar assemblages of cyanobacteria at each point along the transect. A.similar to schaueriana, found only in the coastal portions of the transect, was colonized by assemblages with lower richness than the other trees. However, the results indicated that spatial location was a stronger driver of cyanobacterial community composition than plant species. Distinct cyanobacterial communities were observed at each location along the coast-to-upland transect. Clone library analysis allowed identification of 19 genera of cyanobacteria and demonstrated the presence of several uncultivated taxa. A predominance of sequences affiliated with the orders Nostocales and Oscillatoriales was observed, with a remarkable number of sequences similar to genera Symphyonemopsis/Brasilonema (order Nostocales). The results demonstrated that phyllosphere cyanobacteria in this mangrove forest ecosystem are influenced by environmental conditions as the primary driver at the ecosystem scale, with tree species exerting some effect on community structure at the local scale.
Resumo:
Metrodorea nigra (Rutaceae) is an endemic Brazilian tree of great ecological importance, frequently found in the submontane regions of ombrophilous dense and semideciduous forests. This tree is useful for reforesting degraded areas and the wood can be employed in construction. We developed 12 microsatellite markers from a genomic library enriched for GA/CA repeats, for this species. Polymorphisms were assessed in 40 trees of a highly fragmented population found in Cravinhos, State of Sao Paulo, in southeastern Brazil. Among the 12 loci, 8 were polymorphic and only one had fixed alleles in this population. The number of alleles per locus and expected heterozygosity ranged from 2 to 11 and from 0.190 to 0.889, respectively. These results revealed moderate levels of genetic variation in M. nigra population when compared to other tropical species. Additionally, transferability of the 12 primers was tested in seven other Brazilian Rutaceae tree species (endemics: M. stipularis, Galipea jasminiflora, Esenbeckia leiocarpa and non-endemics: E. febrifuga, E. grandiflora, Balfourodendron riedelianum, Zanthoxylum riedelianum). Transferability ranged among species, but at least 8 loci (similar to 67%) amplified in M. stipularis, demonstrating a high potential for transferring microsatellite markers between species of the same genus in the Rutaceae family.
Resumo:
High-diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well-established tree nursery in southeastern Brazil, namely (1) in-house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high-diversity reforestation as part of tropical forest restoration. In addition, community-based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.
Resumo:
Premise of the study: Microsatellite primers were developed for Jatropha curcas (Euphorbiaceae), a tree species with large potential for biofuel production, to investigate its natural genetic diversity and mating system to facilitate the establishment of tree improvement and conservation programs. Methods and Results: Using a protocol for genomic library enrichment, 104 clones containing 195 repeat motifs were identified. Primer pairs were developed for 40 microsatellite loci and validated in 41 accessions of J. curcas from six provenances. Nine loci were polymorphic revealing from two to eight alleles per locus, and six primers were able to amplify alleles in the congeners J. podagrica, J. pohliana, and J. gossypifolia, but not in other Euphorbiaceae species, such as Hevea brasiliensis, Manihot esculenta, or Ricinus communis. Conclusions: The primers developed here revealed polymorphic loci that are suitable for genetic diversity and structure, mating system, and gene flow studies in J. curcas, and some congeners.
Resumo:
The physiological and molecular processes controlling zygotic and somatic embryo development in angiosperms are mediated by a hierarchically organized program of gene expression. Despite the overwhelming information available about the molecular control of the embryogenic processes in angiosperms, little is known about these processes in gymnosperms. Here we describe the cloning and characterization of the expression pattern of the Araucaria angustifolia putative homolog of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene family member, designated as AaSERK1. The Araucaria AaSERK1 gene encodes a leucine-rich repeat receptor-like kinase showing significant similarity to angiosperm homologs of SERK1, known to be involved in early somatic and zygotic embryogenesis. Accordingly, RT-PCR results showed that AaSERK1 is preferentially expressed in Araucaria embryogenic cell cultures. Additionally, in situ hybridization results showed that AaSERK1 transcripts initially accumulate in groups of cells at the periphery of the embryogenic calli and then are restricted to the developing embryo proper. Our results indicate that AaSERK1 might have a role during somatic embryogenesis in Araucaria, suggesting a potentially conserved mechanism, involving SERK-related leucine-rich repeat receptor-like kinases, in the embryogenic processes among all seed plants.