21 resultados para high-speed atomic force microscope
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Persistent harmful scenarios associated with disposal of radioactive waste, high-background radiation areas and severe nuclear accidents are of great concern regarding consequences to both human health and the environment. Of particular concern is the extracellular DNA in aquatic environments contaminated by radiological substances. Strand breaks induced by radiation promote decrease in the transformation efficiency for extracellular DNA. The focus of this study is the quantification of DNA damage following long-term exposure (over one year) to low doses of natural uranium (an alpha particle emitter) to simulate natural conditions, since nothing is known about alpha radiation induced damage to extracellular DNA. A high-resolution Atomic Force Microscope was used to evaluate DNA fragments. Double-stranded plasmid pBS as a model for extracellular DNA was exposed to different amounts of natural uranium. It was demonstrated that low concentrations of U in water (50 to 150 ppm) produce appreciable numbers of double strand breaks, scaling with the square of the average doses. The importance of these findings for environment monitoring of radiological pollution is addressed.
Resumo:
Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.
Resumo:
Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.
Resumo:
Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objectives: To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride. Methods: Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm circle divide x 4 mm) were mirror-polished and treated according to 6 groups (n = 6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (alpha = .05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (alpha = .05). Results: cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29 +/- 0.55/2.33 +/- 0.17; IT, 2.24 +/- 0.46/2.02 +/- 0.38; IFT, 2.22 +/- 0.53/1.95 +/- 0.36; BW, 2.22 +/- 0.42/3.76 +/- 0.45; BT, 2.27 +/- 0.55/16.05 +/- 3.25; BFT, 2.27 +/- 0.51/22.39 +/- 5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79 +/- 0.25/2.01 +/- 0.25; IT, 1.61 +/- 0.13/1.74 +/- 0.19; IFT, 1.92 +/- 0.39/2.29 +/- 0.51; BW, 2.00 +/- 0.71/2.05 +/- 0.43; BT, 2.37 +/- 0.86/11.17 +/- 2.29; BFT, 1.83 +/- 0.50/15.73 +/- 1.78. No significant differences were seen after immersions (p > .05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p < .01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces. Conclusions: Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Piezoresistive sensors are commonly made of a piezoresistive membrane attached to a flexible substrate, a plate. They have been widely studied and used in several applications. It has been found that the size, position and geometry of the piezoresistive membrane may affect the performance of the sensors. Based on this remark, in this work, a topology optimization methodology for the design of piezoresistive plate-based sensors, for which both the piezoresistive membrane and the flexible substrate disposition can be optimized, is evaluated. Perfect coupling conditions between the substrate and the membrane based on the `layerwise' theory for laminated plates, and a material model for the piezoresistive membrane based on the solid isotropic material with penalization model, are employed. The design goal is to obtain the configuration of material that maximizes the sensor sensitivity to external loading, as well as the stiffness of the sensor to particular loads, which depend on the case (application) studied. The proposed approach is evaluated by studying two distinct examples: the optimization of an atomic force microscope probe and a pressure sensor. The results suggest that the performance of the sensors can be improved by using the proposed approach.
Resumo:
The preserved activity of immobilized biomolecules in layer-by-layer (LbL) films can be exploited in various applications. including biosensing. In this study, cholesterol oxidase (COX) layers were alternated with layers of poly(allylamine hydrochloride) (PAH) in LbL films whose morphology was investigated with atomic force microscopy (AFM). The adsorption kinetics of COX layers comprised two regimes, a fast, first-order kinetics process followed by a slow process fitted with a Johnson-Mehl-Avrami (JMA) function. with exponent similar to 2 characteristic of aggregates growing as disks. The concept based on the use of sensor arrays to increase sensitivity, widely employed in electronic tongues, was extended to biosensing with impedance spectroscopy measurements. Using three sensing units, made of LbL films of PAH/COX and PAHIPVS (polyvinyl sulfonic acid) and a bare gold interdigitated electrode, we were able to detect cholesterol in aqueous solutions down to the 10(-6) M level. This high sensitivity is attributed to the molecular-recognition interaction between COX and cholesterol, and opens the way for clinical tests to be made with low cost. fast experimental procedures. (C) 2008 Published by Elsevier B.V.
Resumo:
Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.
Resumo:
We have explored the suitability and characteristics of interface tailoring as a tool for enhancing the adhesion of hydrogen-free diamond-like carbon (DLC) thin films to silicon substrates. DLC films were deposited on silicon with and without application of an initial high energy carbon ion bombardment phase that formed a broad Si-C interface of gradually changing Si:C composition. The interface depth profile was calculated using the TRIDYN simulation program, revealing a gradient of carbon concentration including a region with the stoichiometry of silicon carbide. DLC films on silicon, with and without interface tailoring, were characterized using Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scratch tests. The Raman spectroscopy results indicated sp3-type carbon bonding content of up to 80%. Formation of a broadened Si:C interface as formed here significantly enhances the adhesion of DLC films to the underlying silicon substrate. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The goal of this article was to evaluate the surface characteristics of the pine fibres and its impact on the performance of fibre-cement composites. Lower polar contribution of the surface energy indicates that unbleached fibres have less hydrophilic nature than the bleached fibres. Bleaching the pulp makes the fibres less stronger, more fibrillated and permeable to liquids due to removal the amorphous lignin and its extraction from the fibre surface. Atomic force microscopy reveals these changes occurring on the fibre surface and contributes to understanding the mechanism of adhesion of the resulting fibre to cement interface. Scanning electron microscopy shows that pulp bleaching increased fibre/cement interfacial bonding, whilst unbleached fibres were less susceptible to cement precipitation into the fibre cavities (lumens) in the prepared composites. Consequently, bleached fibre-reinforced composites had lower ductility due to the high interfacial adhesion between the fibre and the cement and elevated rates of fibre mineralization.
Resumo:
In this study we systematically investigated how the solvent composition used for polymer dissolution affects the porous structures of spin-coated polymers films. Cellulose acetate butyrate (CAB) and poly(methylmethacrylate) with low(PMMA-L) and high (PMMA-H) molecular weights were dissolved in mixtures of acetone (AC) and ethyl acetate (EA) at constant polymer concentration of 10 g/L The films were spin-coated at a relative air humidity of 55+/-5%, their thickness and index of refraction were determined by means of ellipsometry and their morphology was analyzed by atomic force microscopy. The dimensions and frequency of nanocavities on polymer films increased with the acetone content (phi(AC)) in the solvent mixture and decreased with increasing polymer molecular weight. Consequently, as the void content increased in the films, their apparent thicknesses increased and their indices of refraction decreased, creating low-cost anti-reflection surface. The void depth was larger for PMMA-L than for CAB. This effect was attributed to different activities of EA and AC in CAB or PMMA-L solution, the larger mobility of chains and the lower polarity of PMMA-L in comparison to CAB. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Films of cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) were deposited from ethyl acetate solutions onto bare silicon wafers (Si/SiO2) or amino-terminated surfaces (APS) by means of equilibrium adsorption. All surfaces were characterized by means of ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The presence of amino groups on the support surface favored the adsorption of CAB and CMCAB, inducing the orientation almost polar groups to the surface and the exposition of alkyl group to the air. Such molecular orientation caused increase of the dispersive component of surface energy (gamma(d)(s)) and decrease of the polar component of surface energy (gamma(p)(s)) of cellulose esters in comparison to those values determined for films deposited onto bare Si/SiO2 wafers. Adsorption behavior of jacalin or concanavalin A onto CAB and CMCAB films was also investigated. The adsorbed amounts of lectins were more pronounced on cellulose esters with high (gamma(p)(s)) and total surface energy (gamma(t)(s)) values. (C) 2011 Elsevier B.V. All rights reserved.