16 resultados para heparin
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Previous studies have shown that heparin induces vascular relaxation via integrin-dependent nitric oxide (NO)-mediated activation of the muscarinic receptor. The aim of this study was to identify the structural features of heparin that are necessary for the induction of vasodilatation. To address this issue, we tested heparin from various sources for their vasodilatation activities in the rat aorta ring. Structural and chemical characteristics of heparin, such as its molecular weight and substitution pattern, did not show a direct correlation with the vasodilation activity. Principal component analysis (PCA) of circular dichroism (CD), 1H-nuclear magnetic resonance (NMR) and vasodilation activity measurements confirmed that there is no direct relationship between the physico-chemical nature and vasodilation activity of the tested heparin samples. To further understand these observations, unfractionated heparin (UFH) from bovine intestinal mucosa, which showed the highest relaxation effect, was chemically modified. Interestingly, non-specific O- and N-desulfation of heparin reduced its anticoagulant, antithrombotic, and antihemostatic activities, but had no effect on its ability to induce vasodilation. On the other hand, chemical reduction of the carboxyl groups abolished heparin-induced vasodilation and reduced the affinity of heparin toward the extracellular matrix (ECM). In addition, dextran and dextran sulfate (linear non-sulfated and highly sulfated polysaccharides, respectively) did not induce significant relaxation, showing that the vasodilation activity of polysaccharides is neither charge-dependent nor backbone unspecific. Our results suggest that desulfated heparin molecules may be used as vasoactive agents due to their low side effects. J. Cell. Biochem. 113: 13591367, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
LigB is an adhesin from pathogenic Leptospira that is able to bind to extracellular matrix and is considered a virulence factor. A shotgun phage display genomic library was constructed and used for panning against Heparan Sulfate Proteoglycan (HSPG). A phage clone encoding part of LigB protein was selected in panning experiments and showed specific binding to heparin. To validate the selected clone, fragments of LigB were produced as recombinant proteins and showed affinity to heparin and to mammalian cells. Heparin was also able to reduce the binding of rLB-Ct to mammalian cells. Our data suggests that the glycosaminoglycan moiety of the HSPG is responsible for its binding and could mediate the attachment of the recombinant protein rLB-Ct. Thus, heparin may act as a receptor for Leptospira to colonize and to invade the host tissue. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Objectives. The aim of this study was to investigate the HLA-G serum levels in Primary Antiphospholipid Syndrome (PAPS) patients, its impact on clinical and laboratory findings, and heparin treatment. Methods. Forty-four PAPS patients were age and gender matched with 43 controls. HLA-G serum levels were measured using an enzyme-linked immunosorbent assay (ELISA). Results. An increase in soluble HLA-G levels was found in patients compared to controls (3.35 (0 22.9) versus 1.1 (0 14), P = 0.017). There were no significant differences in HLA-G levels between patients with and without obstetric events, arterial thrombosis, venous thrombosis, or stroke. Sixty-six percent of patients were being treated with heparin. Interestingly, patients treated with heparin had higher HLA-G levels than ones who were not treated with this medication (5 (0-22.9) versus 1.8 (0-16) ng/mL, P = 0.038). Furthermore, patients on heparin who experienced obstetric events had a trend to increased HLA-G levels compared to patients who were not on heparin and did not have obstetric events (5.8 (0-22.9) versus 2 (0-15.2) ng/mL, P = 0.05). Conclusion. This is the first study to demonstrate that serum HLA-G levels are increased in APS patients. We also demonstrated that heparin increases HLA-G levels and may increase tolerance towards autoantigens.
Resumo:
Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of alpha-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote alpha-synuclein aggregation. Taking into account the toxicity of alpha-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.
Resumo:
The presence of heparin and a mixture of penicillamine, hypotaurine, and epinephrine (PHE) solution in the in vitro fertilization (IVF) media seem to be a prerequisite when bovine spermatozoa are capacitated in vitro, in order to stimulate sperm motility and acrosome reaction. The present study was designed to determine the effect of the addition of heparin and PHE during IVF on the quality and penetrability of spermatozoa into bovine oocytes and on subsequent embryo development. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes and mitochondrial function, was diminished (P<0.05) in the presence of heparin and PHE. Oocyte penetration and normal pronuclear formation rates, as well as the percentage of zygotes presenting more than two pronuclei, was higher (P<0.05) in the presence of heparin and PHE. No differences were observed in cleavage rates between treatment and control (P>0.05). However, the developmental rate to the blastocyst stage was increased in the presence of heparin and PHE (P>0.05). The quality of embryos that reached the blastocyst stage was evaluated by counting the inner cell mass (ICM) and trophectoderm (TE) cell numbers and total number of cells; the percentage of ICM and TE cells was unaffected (P>0.05) in the presence of heparin and PHE (P<0.05). In conclusion, this study demonstrated that while the supplementation of IVF media with heparin and PHE solution impairs spermatozoa quality, it plays an important role in sperm capacitation, improving pronuclear formation, and early embryonic development
Resumo:
OBJECTIVES: The aim of this manuscript is to describe the first year of our experience using extracorporeal membrane oxygenation support. METHODS: Ten patients with severe refractory hypoxemia, two with associated severe cardiovascular failure, were supported using venous-venous extracorporeal membrane oxygenation (eight patients) or veno-arterial extracorporeal membrane oxygenation (two patients). RESULTS: The median age of the patients was 31 yr (range 14-71 yr). Their median simplified acute physiological score three (SAPS3) was 94 (range 84-118), and they had a median expected mortality of 95% (range 87-99%). Community-acquired pneumonia was the most common diagnosis (50%), followed by P. jiroveci pneumonia in two patients with AIDS (20%). Six patients were transferred from other ICUs during extracorporeal membrane oxygenation support, three of whom were transferred between ICUs within the hospital (30%), two by ambulance (20%) and one by helicopter (10%). Only one patient (10%) was anticoagulated with heparin throughout extracorporeal membrane oxygenation support. Eighty percent of patients required continuous venous-venous hemofiltration. Three patients (30%) developed persistent hypoxemia, which was corrected using higher positive end-expiratory pressure, higher inspired oxygen fractions, recruitment maneuvers, and nitric oxide. The median time on extracorporeal membrane oxygenation support was five (range 3-32) days. The median length of the hospital stay was 31 (range 3-97) days. Four patients (40%) survived to 60 days, and they were free from renal replacement therapy and oxygen support. CONCLUSIONS: The use of extracorporeal membrane oxygenation support in severely ill patients is possible in the presence of a structured team. Efforts must be made to recognize the necessity of extracorporeal respiratory support at an early stage and to prompt activation of the extracorporeal membrane oxygenation team.
Resumo:
ADAM17, which is also known as TNF alpha-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.
Resumo:
Low-molecular-weight heparins (LMWHs) have shown equivalent or superior efficacy and safety to unfractionated heparin as antithrombotic therapy for patients with acute coronary syndromes. Each approved LMWH is a pleotropic biological agent with a unique chemical, biochemical, biophysical and biological profile and displays different pharmacodynamic and pharmacokinetic profiles. As a result, LMWHs are neither equipotent in preclinical assays nor equivalent in terms of their clinical efficacy and safety. Previously, the US Food and Drug Administration (FDA) cautioned against using various LMWHs interchangeably, however recently, the FDA approved generic versions of LMWH that have not been tested in large clinical trials. This paper highlights the bio-chemical and pharmacological differences between the LMWH preparations that may result in different clinical outcomes, and also reviews the implications and challenges physicians face when generic versions of the original/innovator agents are approved for clinical use.
Resumo:
LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH center dot radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.
Resumo:
The objective of this study was to evaluate the quality of bovine frozen-thawed sperm cells after Percoll gradient centrifugation. Frozen semen doses were obtained from six bulls of different breeds, including three taurine and three Zebu animals. Four ejaculates per bull were evaluated before and after discontinuous Percoll gradient centrifugation. Sperm motility was assessed by computer-assisted semen analysis and the integrity of the plasma and acrosomal membranes, as well as mitochondrial function, were evaluated using a combination of fluorescent probes propidium iodide, fluorescein isothiocyanate-conjugated Pisum sativum agglutinin and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide. The procedure of Percoll gradient centrifugation increased the percentage of total and progressive sperm motility, beat frequency, rectilinear motility, linearity and rapidly moving cells. In addition, the percentage of cells with intact plasma membrane and mitochondrial membrane potential was increased in post-centrifugation samples. However, the percentage of sperm cells with intact acrosomal membrane was markedly reduced. The method used selected the motile cells with intact plasma membrane and higher mitochondrial functionality in frozen-thawed bull semen, but processing, centrifugation and/or the Percoll medium caused damage to the acrosomal membrane.
Resumo:
Background: Intralipid (R) and heparin infusion results in increased blood pressure and autonomic abnormalities in normal and hypertensive individuals. Objective: To evaluate insulin sensitivity and the impact of Intralipid (R) and heparin (ILH) infusion on hemodynamic, metabolic, and autonomic response in patients with the indeterminate form of Chagas' disease. Methods: Twelve patients with the indeterminate form of Chagas' disease and 12 healthy volunteers were evaluated. Results: Baseline blood pressure and heart rate were similar in both groups. Plasma noradrenaline levels were slightly increased in the Chagas' group. After insulin tolerance testing (ITT), a significant decline was noted in glucose in both groups. ILH infusion resulted in increased blood pressure in both groups, but there was no significant change in plasma noradrenaline. The low-frequency component (LF) was similar and similarly increased in both groups. The high-frequency component (HF) was lower in the Chagas' group. Conclusion: Patients with the indeterminate form of Chagas' disease had increased sympathetic activity at baseline and impaired response to insulin. They also had a lower high-frequency component and impaired baroreflex sensitivity at baseline and during Intralipid (R) and heparin infusion. (Arq Bras Cardiol 2012;98(3):225-233)
Resumo:
Abstract Background Plasma lipases and lipid transfer proteins are involved in the generation and speciation of high density lipoproteins. In this study we have examined the influence of plasma lipases and lipid transfer protein activities on the transfer of free cholesterol (FC) and phospholipids (PL) from lipid emulsion to human, rat and mouse lipoproteins. The effect of the lipases was verified by incubation of labeled (3H-FC,14C-PL) triglyceride rich emulsion with human plasma (control, post-heparin and post-heparin plus lipase inhibitor), rat plasma (control and post-heparin) and by the injection of the labeled lipid emulsion into control and heparinized functionally hepatectomized rats. Results In vitro, the lipase enriched plasma stimulated significantly the transfer of 14C-PL from emulsion to high density lipoprotein (p<0.001) but did not modify the transfer of 3H-FC. In hepatectomized rats, heparin stimulation of intravascular lipolysis increased the plasma removal of 14C-PL and the amount of 14C-PL found in the low density lipoprotein density fraction but not in the high density lipoprotein density fraction. The in vitro and in vivo experiments showed that free cholesterol and phospholipids were transferred from lipid emulsion to plasma lipoproteins independently from each other. The incubation of human plasma, control and control plus monoclonal antibody anti-cholesteryl ester transfer protein (CETP), with 14C-PL emulsion showed that CETP increases 14C-PL transfer to human HDL, since its partial inhibition by the anti-CETP antibody reduced significantly the 14C-PL transfer (p<0.05). However, comparing the nontransgenic (no CETP activity) with the CETP transgenic mouse plasma, no effect of CETP on the 14C-PL distribution in mice lipoproteins was observed. Conclusions It is concluded that: 1-intravascular lipases stimulate phospholipid transfer protein mediated phospholipid transfer, but not free cholesterol, from triglyceride rich particles to human high density lipoproteins and rat low density lipoproteins and high density lipoproteins; 2-free cholesterol and phospholipids are transferred from triglyceride rich particles to plasma lipoproteins by distinct mechanisms, and 3 - CETP also contributes to phospholipid transfer activity in human plasma but not in transgenic mice plasma, a species which has high levels of the specific phospholipid transfer protein activity.
Resumo:
Abstract Background Adhesion to extracellular matrix (ECM) components has been implicated in the proliferative and invasive properties of tumor cells. We investigated the ability of C6 glioma cells to attach to ECM components in vitro and described the regulatory role of glycosaminoglycans (GAGs) on their adhesion to the substrate, proliferation and migration. Results ECM proteins (type IV collagen, laminin and fibronectin) stimulate rat C6 glioma cell line adhesion in vitro, in a dose-dependent manner. The higher adhesion values were achieved with type IV collagen. Exogenous heparin or chondroitin sulfate impaired, in a dose-dependent manner the attachment of C6 glioma cell line to laminin and fibronectin, but not to type IV collagen. Dextran sulfate did not affect C6 adhesion to any ECM protein analyzed, indicating a specific role of GAGs in mediating glioma adhesion to laminin and fibronectin. GAGs and dextran sulfate did not induce C6 glioma detachment from any tested substrate suggesting specific effect in the initial step of cell adhesion. Furthermore, heparin and chondroitin sulfate impaired C6 cells proliferation on fibronectin, but not on type IV collagen or laminin. In contrast, both GAGs stimulate the glioma migration on laminin without effect on type IV collagen or fibronectin. Conclusion The results suggest that GAGs and proteoglycans regulate glioma cell adhesion to ECM proteins in specific manner leading to cell proliferation or cell migration, according to the ECM composition, thus modulating tumor cell properties.
Resumo:
This is an integrative literature review with the aim of summarizing the prevention measures and treatment of thrombotic obstruction of long-term semi-implanted central venous catheters, in patients undergoing hematopoietic stem cell transplantation. The sample consisted of seven studies, being two randomized controlled clinical trials, three cohort studies and two case series. Regarding the prevention measures, one single study demonstrated effectiveness, which was a cohort study on the oral use of warfarin. In relation to the treatment measures, three studies evidenced effectiveness, one highlighted the efficacy of streptokinase or urokinase, one demonstrated the benefit of using low-molecular-weight heparin and the other treated the obstruction with heparin or urokinase. Catheter patency research shows a restricted evolution that does not follow the evolution of transplantations, mainly regarding nursing care.
Resumo:
LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.