7 resultados para group theory

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component. It is also shown how to reduce the classification of maximal subgroups of the last two types to: (2) the classification of the finite maximal Sigma-invariant subgroups of centerfree connected compact simple Lie groups and (3) the classification of the Sigma-primitive subalgebras of compact simple Lie algebras, where Sigma is a subgroup of the corresponding outer automorphism group. In the second part, we explicitly compute the normalizers of the primitive subalgebras of the compact classical Lie algebras (in the corresponding classical groups), thus arriving at the complete classification of all (non-discrete) maximal subgroups of the compact classical Lie groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiconductor nanowhiskers (NWs) made of III-V compounds exhibit great potential for technological applications. Controlling the growth conditions, such as temperature and diameter, it is possible to alternate between zinc-blende (ZB) and wurtzite (WZ) crystalline phases, giving origin to the so called polytypism. This effect has great influence in the electronic and optical properties of the system, generating new forms of confinement to the carriers. A theoretical model capable to accurately describe electronic and optical properties in these polytypical nanostructures can be used to study and develop new kinds of nanodevices. In this study, we present the development of a wurtzite/zinc-blende polytypical model to calculate the electronic band structure of nanowhiskers based on group theory concepts and the k.p method. Although the interest is in polytypical superlattices, the proposed model was applied to a single quantum well of InP to study the physics of the wurtzite/zinc-blende polytypism. By the analysis of our results, some trends can be predicted: spatial carriers' separation, predominance of perpendicular polarization (xy plane) in the luminescence spectra, and interband transition blueshifts with strain. Also, a possible range of values for the wurtzite InP spontaneous polarization is suggested. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767511]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

VIBRATIONAL ANALYSIS OF COORDINATION COMPOUNDS OF NICKEL (II): AN APPROACH TO THE TEACHING OF POINT GROUPS. This paper presents an IR and Raman experiment executed during the teaching of the course "Chemical Bonds" for undergraduated students of Science and Technology and Chemistry at the Federal University of ABC, in order to facilitate and encourage the teaching and learning of group theory. Some key aspects of this theory are also outlined. We believe that student learning was more significant with the introduction of this experiment, because there was an increase in the discussions level and in the performance during evaluations. This work also proposes a multidisciplinary approach to include the use of quantum chemistry tools.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an IR and Raman experiment executed during the teaching of the course "Chemical Bonds" for undergraduated students of Science and Technology and Chemistry at the Federal University of ABC, in order to facilitate and encourage the teaching and learning of group theory. Some key aspects of this theory are also outlined. We believe that student learning was more significant with the introduction of this experiment, because there was an increase in the discussions level and in the performance during evaluations. This work also proposes a multidisciplinary approach to include the use of quantum chemistry tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabasi-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q > 2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum chemical calculations at the B3LYP/6-31G* level of theory were employed for the structure-activity relationship and prediction of the antioxidant activity of edaravone and structurally related derivatives using energy (E), ionization potential (IP), bond dissociation energy (BDE), and stabilization energies(Delta E-iso). Spin density calculations were also performed for the proposed antioxidant activity mechanism. The electron abstraction is related to electron-donating groups (EDG) at position 3, decreasing the IP when compared to substitution at position 4. The hydrogen abstraction is related to electron-withdrawing groups (EDG) at position 4, decreasing the BDECH when compared to other substitutions, resulting in a better antioxidant activity. The unpaired electron formed by the hydrogen abstraction from the C-H group of the pyrazole ring is localized at 2, 4, and 6 positions. The highest scavenging activity prediction is related to the lowest contribution at the carbon atom. The likely mechanism is related to hydrogen transfer. It was found that antioxidant activity depends on the presence of EDG at the C-2 and C-4 positions and there is a correlation between IP and BDE. Our results identified three different classes of new derivatives more potent than edaravone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical conductivity σ has been calculated for p-doped GaAs/Al0.3Ga0.7As and cubic GaN/Al0.3Ga0.7N thin superlattices (SLs). The calculations are done within a self-consistent approach to the k → ⋅ p → theory by means of a full six-band Luttinger-Kohn Hamiltonian, together with the Poisson equation in a plane wave representation, including exchange correlation effects within the local density approximation. It was also assumed that transport in the SL occurs through extended minibands states for each carrier, and the conductivity is calculated at zero temperature and in low-field ohmic limits by the quasi-chemical Boltzmann kinetic equation. It was shown that the particular minibands structure of the p-doped SLs leads to a plateau-like behavior in the conductivity as a function of the donor concentration and/or the Fermi level energy. In addition, it is shown that the Coulomb and exchange-correlation effects play an important role in these systems, since they determine the bending potential.