6 resultados para gene technology

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS = 0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (FST) of inter-population variance in allele frequencies, was detected for SNPs and both OR- and SR-haplotypes among almost all parasite populations. The exception was parasite populations between Tanzania and Ghana, suggesting frequent gene flow in Africa. The present study points to the importance of investigating whether biased geographical distribution for SNPs and repeat variants in the OR and SR regions affect the reactivity of human serum antibodies to variants. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazilian pine (Araucaria angustifolia (Bert) O. Ktze) is the only native conifer species with economic importance in Brazil. Recently, due to intensive exploitation Brazilian pine was included in the official list of endangered Brazilian plants, under the "vulnerable" category. Biotechnology tools like somatic embryogenesis (SE) are potentially useful for mass clonal propagation and ex situ conservation strategies of commercial and endangered plant species. In spite of that, numerous obstacles still hamper the full application of SE technology for a wider range of species, including Brazilian pine. To enhance somatic embryogenesis in Brazilian pine and to gain a better understanding of the molecular events associated with somatic embryo development, we analyzed the steady-state transcript levels of genes known to regulate somatic embryogenesis using semiquantitative reverse transcription polymerase chain reaction (sqRT-PCR). These genes included Argonaute (AaAGO), Cup-shaped cotyledon1 (AaCUC), wushel-related WOX (AaWOX), a S-locus lectin protein kinase (AaLecK), Scarecrow- like (AaSCR), Vicilin 7S (AaVIC), Leafy Cotyledon 1 (AaLEC), and a Reversible glycosylated polypeptide (AaRGP). Expression patterns of these selected genes were investigated in embryogenic cultures undergoing different stages of embryogenesis, and all the way to maturation. Up-regulation of AaAGO, AaCUC, AaWOX, AaLecK, and AaVIC was observed during transition of somatic embryos from stage I to stage II. During the maintenance phase of somatic embryogenesis, expression of AaAGO and AaSCR, but not AaRPG and AaLEC genes was influenced by presence/ absence of plant growth regulators, both auxins and cytokinins. The results presented here provide new insights on the molecular mechanisms responsible for somatic embryo formation, and how selected genes may be used as molecular markers for Brazilian pine embryogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In gene-banking, primordial germ cells (PGCs), which are embryonic precursor cells of germ cells, are useful for cryopreservation because PGCs have a potential to differentiate into both eggs and sperm via germ-line chimera. Here, we have established vitrification methods for PGCs cryopreservation using 12- to 17-somite stage embryos in loach, Misgurnus anguillicaudatus, which were dechorionated, removed their yolk and injected with green fluorescent protein (GFP) -nos1 3'UTR mRNA to visualize their PGCs. In order to optimize cryopreservation medium for vitrification, the toxicity of cryoprotectants was analyzed. Different concentrations (2, 3, 4, 5 m) of dimethyl sulfoxide (DMSO), methanol (MeOH), ethylene glycol (EG) and propylene glycol (PG) as cryoprotectants were tested. Then, 5 m DMSO showed significantly-high toxicity. Based on this information, combinations called DMP (2 m (14.2% [v/v]) DMSO, 2 m (8.1% [v/v]) MeOH and 2 m (14.4% [v/v]) PG), DP (2 m (14.2% [v/v]) DMSO and 4 m (28.7% [v/v]) PG) and DE (2.1 m (15% [v/v]) DMSO and 2.7 m (15% [v/v]) EG) were evaluated for their toxicities and efficacy of PGCs cryopreservation using two types of equilibration step: direct immersion of cryopreservation media (one-step) and serial exposure to half and full concentration of cryopreservation media (two-step). Viable PGCs were obtained from post-thaw embryos which were cryopreserved by DP and DE with both 1- and 2-step equilibrations. Despite DP showing the highest toxicity, it gave the highest survival rate of embryonic cells after cryopreservation. When PGCs recovered from vitrified embryos were transplanted into host embryos at the blastula stage, the transplanted PGCs were able to migrate to a host genital ridge similarly as endogenous PGCs. It suggests that our methods could be useful to create a germ-line chimera for the production of gametes from PGCs of cryopreserved embryos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Spotted cDNA microarrays generally employ co-hybridization of fluorescently-labeled RNA targets to produce gene expression ratios for subsequent analysis. Direct comparison of two RNA samples in the same microarray provides the highest level of accuracy; however, due to the number of combinatorial pair-wise comparisons, the direct method is impractical for studies including large number of individual samples (e.g., tumor classification studies). For such studies, indirect comparisons using a common reference standard have been the preferred method. Here we evaluated the precision and accuracy of reconstructed ratios from three indirect methods relative to ratios obtained from direct hybridizations, herein considered as the gold-standard. Results We performed hybridizations using a fixed amount of Cy3-labeled reference oligonucleotide (RefOligo) against distinct Cy5-labeled targets from prostate, breast and kidney tumor samples. Reconstructed ratios between all tissue pairs were derived from ratios between each tissue sample and RefOligo. Reconstructed ratios were compared to (i) ratios obtained in parallel from direct pair-wise hybridizations of tissue samples, and to (ii) reconstructed ratios derived from hybridization of each tissue against a reference RNA pool (RefPool). To evaluate the effect of the external references, reconstructed ratios were also calculated directly from intensity values of single-channel (One-Color) measurements derived from tissue sample data collected in the RefOligo experiments. We show that the average coefficient of variation of ratios between intra- and inter-slide replicates derived from RefOligo, RefPool and One-Color were similar and 2 to 4-fold higher than ratios obtained in direct hybridizations. Correlation coefficients calculated for all three tissue comparisons were also similar. In addition, the performance of all indirect methods in terms of their robustness to identify genes deemed as differentially expressed based on direct hybridizations, as well as false-positive and false-negative rates, were found to be comparable. Conclusion RefOligo produces ratios as precise and accurate as ratios reconstructed from a RNA pool, thus representing a reliable alternative in reference-based hybridization experiments. In addition, One-Color measurements alone can reconstruct expression ratios without loss in precision or accuracy. We conclude that both methods are adequate options in large-scale projects where the amount of a common reference RNA pool is usually restrictive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Prostate cancer is a leading cause of death in the male population, therefore, a comprehensive study about the genes and the molecular networks involved in the tumoral prostate process becomes necessary. In order to understand the biological process behind potential biomarkers, we have analyzed a set of 57 cDNA microarrays containing ~25,000 genes. Results Principal Component Analysis (PCA) combined with the Maximum-entropy Linear Discriminant Analysis (MLDA) were applied in order to identify genes with the most discriminative information between normal and tumoral prostatic tissues. Data analysis was carried out using three different approaches, namely: (i) differences in gene expression levels between normal and tumoral conditions from an univariate point of view; (ii) in a multivariate fashion using MLDA; and (iii) with a dependence network approach. Our results show that malignant transformation in the prostatic tissue is more related to functional connectivity changes in their dependence networks than to differential gene expression. The MYLK, KLK2, KLK3, HAN11, LTF, CSRP1 and TGM4 genes presented significant changes in their functional connectivity between normal and tumoral conditions and were also classified as the top seven most informative genes for the prostate cancer genesis process by our discriminant analysis. Moreover, among the identified genes we found classically known biomarkers and genes which are closely related to tumoral prostate, such as KLK3 and KLK2 and several other potential ones. Conclusion We have demonstrated that changes in functional connectivity may be implicit in the biological process which renders some genes more informative to discriminate between normal and tumoral conditions. Using the proposed method, namely, MLDA, in order to analyze the multivariate characteristic of genes, it was possible to capture the changes in dependence networks which are related to cell transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies.