12 resultados para fluorescein
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
To evaluate changes in electroretinographic (ERG) findings after panretinal photocoagulation (PRP) compared to PRP plus intravitreal injection of ranibizumab (IVR) in eyes with high-risk proliferative diabetic retinopathy (PDR). Patients with high-risk PDR and no prior laser treatment were assigned randomly to receive PRP (PRP group; n = 9) or PRP plus IVR (PRPplus group; n = 11). PRP was administered in two sessions (weeks 0 and 2), and IVR was administered at the end of the first laser session (week 0) in the PRPplus group. Standardized ophthalmic evaluations including (ETDRS) best-corrected visual acuity (BCVA), and fluorescein angiography to measure area of fluorescein leakage (FLA), were performed at baseline and at weeks 16 (+/- 2), 32 (+/- 2) and 48 (+/- 2). ERG was measured according to ISCEV standards at baseline and at week 48 (+/- 2). At 48 weeks, 2,400-3,000 laser spots had been placed in eyes in the PRP group, while only 1,400-1,800 spots had been placed in the PRPplus group. Compared to baseline, there was a statistically significant (P < 0.05) FLA reduction observed at all study visits in both groups, with the reduction observed in the PRPplus group significantly larger than that in the PRP group at week 48. ROD b-wave amplitude was significantly reduced to 46 +/- A 5 % (P < 0.05) of baseline in the PRP group and 64 +/- A 6 % (P < 0.05) in the PRPplus group. This reduction was significantly larger in the PRP group than in the PRPplus group (P = 0.024; t Test). Similar results were observed for the dark-adapted Combined Response (CR) b-wave amplitude, with a reduction at 48 weeks compared to baseline of 45 +/- A 4 % in the PRP group and 62 +/- A 5 % in the PRPplus group; the reduction in CR b-wave amplitude was significantly larger in the PRP group than in the PRPplus group (P = 0.0094). CR a-wave, oscillatory potentials, cone single flash, and 30 Hz flicker responses showed statistically significant within-group reductions, but no differences in between-group analyses. These results suggest that treating high-risk PDR with PRP plus IVR is effective for PDR control, and permits the use of less extensive PRP which, in turn, induces less retinal functional loss, in particular for rod-driven post-receptoral responses, than treatment with PRP alone.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of Sao Paulo: Parque Estadual Turistico do Alto do Ribeira and Parque Estadual de Campos de Jordao. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO(2)) and the following enzyme activities: beta-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO(2). The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO(2), suggesting an advanced stage of succession.
Resumo:
The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen (1O2). While most ROS are already well studied in the malaria parasite, singlet oxygen has been neglected to date. In this study we visualized the generation of 1O2 by live cell fluorescence microscopy using 3-(p-aminophenyl) fluorescein as an indicator dye. While 1O2 is found restrictively in the parasite, its amount varies during erythrocytic schizogony. Since the photosensitizer cercosporin generates defined amounts of 1O2 we have established a new cytometric method that allows the stage specific quantification of 1O2. Therefore, the parasites were first classified into three main stages according to their respective pixel-area of 200600 pixels for rings, 7001,200 pixels for trophozoites and 1,4002,500 pixels for schizonts. Interestingly the highest mean concentration of endogenous 1O2 of 0.34 nM is found in the trophozoites stage, followed by 0.20 nM (ring stage) and 0.10 nM (schizont stage) suggesting that 1O2 derives predominantly from the digestion of hemoglobin. (c) 2012 International Society for Advancement of Cytometry
Resumo:
Land degradation causes great changes in the soil biological properties. The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity. The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation (NV), moderately degraded land (LDL), highly degraded land (HDL) and land under restoration for four years (RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil. Soil samples were collected at 0-10 cm depth. Soil organic carbon (SOC), soil microbial biomass C (MBC) and N (MBN), soil respiration (SR), and hydrolysis of fluorescein diacetate (FDA) and dehydrogenase (DHA) activities were analyzed. After two years of evaluation, soil MBC, MBN, FDA and DHA had higher values in the NV, followed by the RL. The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV. However, after land restoration, the MBC and MBN increased approximately 5-fold and 2-fold, respectively, compared with the HDL. The results showed that land degradation produced a strong decrease in soil microbial biomass. However, land restoration may promote short- and long-term increases in soil microbial biomass.
Resumo:
Europium-doped lanthanide oxide RE2O3:Eu3+ (RE = Y or Gd) luminescent beads, with a spherical shape and a diameter of 150 +/- 15 nm, have been modified by reaction with 3-aminopropyltriethoxysilane (APTES), in order to introduce reactive amine groups at their surfaces. The direct silanation has resulted in the formation of a nanometric layer at the surface of the beads, with an optimum grafting rate of 0.055 +/- 0.005 mol APTES/mol RE2O3. Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopies confirmed the condensation of an organosilane layer, made of cross-linked -O-Si-O-Si- and of groups -O-Si-R (with R = (CH2)(3)NH2 or O-Et). Titration of the accessible amine groups has been performed by simultaneously measuring the luminescence of grafted fluorescein isothiocyanate and that of core particles: there are about 2.3 X 10(4) (2.8 X 10(4)) -NH2 per Y2O3:Eu3+ (Gd2O3:Eu3+) bead. The isoelectronic point was shifted by one pH unit after APTES modification. The surface modification by APTES at least preserved (for Gd2O3:Eu3+) or improved (for Y2O3:Eu3+) the red emission of the beads.
Resumo:
Background: To investigate indocyanine green angiography (ICGA) findings in patients with long-standing Vogt-Koyanagi-Harada (VKH) disease and their correlation with disease activity on clinical examination as well as with systemic corticosteroid therapy. Methods: Twenty-eight patients (51 eyes) with long-standing (>= 6 months from disease onset) VKH disease whose treatment was tapered based only in clinical features were prospectively included at a single center in Brazil. All patients underwent standardized clinical evaluation, which included fundus photography, fluorescein angiography and ICGA. Clinical disease activity was determined based in the Standardization in Uveitis Nomenclature Working Group. Fisher exact test and logistic regression models were used for statistical analysis. Results: Disease-related choroidal inflammation on ICGA was observed in 72.5% (31 of 51 eyes). Angiographic findings suggestive of (choroidal and/or retinal) disease activity were not observed on FA. Clinically active disease based on clinical evaluation was observed in 41.2% (21 of 51 eyes). In these 21 eyes, disease-related choroidal inflammation on ICGA was observed in 76.2% (16 of 21 eyes); in the remaining eyes (without clinical active disease) disease-related choroidal inflammation on ICGA was observed in 70.0% (21 of 30 eyes). In respect to systemic corticosteroid therapy, 10 patients (18 of 51 eyes) were under treatment with prednisone. In these 10 (18 of 51 eyes) patients, disease-related choroidal inflammation on ICGA was observed in 83.3% (15 of 18 eyes); in the remaining patients (33 of 51 eyes) disease-related choroidal inflammation on ICGA was observed in 66.7% (22 of 33 eyes). Conclusion: ICGA findings suggestive of disease-related choroidal inflammation were observed in a considerable proportion of patients with long-standing VKH disease, independent of the inflammatory status of the disease on clinical examination or current use of systemic corticosteroid. Therefore, the current study reinforces the crucial role of ICGA to assist the management and treatment of patients with long-standing VKH disease.
Resumo:
Fabrication of microstructures containing active compounds, such as fluorescent dyes and nanoparticles have been exploited in the last few years, aiming at applications from photonics to biology. Here we fabricate, using two-photon polymerization, microstructures containing the fluorescent dyes Stilbene 420, Disodium Fluorescein and Rhodamine B. The produced microstructures, containing dyes at specific sites, present good structural integrity and a broad fluorescence spectrum, from about 350 nm until 700 nm. Such spectrum can be tuned by using different excitation wavelengths and selecting the excitation position in the microstructure. These results are interesting for designing multi-doped structures, presenting tunable and broad fluorescence spectrum. (C)2012 Optical Society of America
Resumo:
The success of semen cryopreservation is influenced by several factors, such as freezing curves and cryoprotectants. These two factors are of special interest once they may lead to many important physical-chemical changes resulting in different degrees of damage in spermatozoa structure. This experiment was designed to compare the effect of bull semen cryopreservation using two freezing techniques: conventional (CT cooling rate of -0.55 degrees C min-1 and freezing rate of -19.1 degrees C min-1) and automated (AT cooling rate of -0.23 degrees C min-1 and freezing rate of -15 degrees C min-1), performed with different curves, and with three cryoprotectants (glycerol, ethylene glycol and dimethyl formamide) on bovine sperm motility and integrity of plasma, acrosomal and mitochondrial membranes. These variables were simultaneously evaluated using the fluorescence probes propidium iodide, fluorescein-conjugated Pisum sativum agglutinin and MitoTracker Green FM. The effects of freezing techniques, as well as of different cryoprotectants were analysed by the analysis of variance. The means were compared by Fishers test. There were no significant differences between freezing techniques (P > 0.05). Glycerol showed higher percentages of motility, vigour and integrity of plasma, acrosomal and mitochondrial membranes than other two cryoprotectants (P < 0.05). Ethylene glycol preserved higher motility and integrity of plasma and mitochondrial membranes than dimethyl formamide (P < 0.05). Sperm motility with glycerol was 30.67 +/- 1.41% and 30.50 +/- 1.06%, with ethylene glycol was 21.17 +/- 1.66% and 21.67 +/- 1.13% and with dimethyl formamide was 8.33 +/- 0.65% and 9.17 +/- 0.72% to CT and AT curves, respectively. The percentage of spermatozoa with simultaneously intact plasma membrane, intact acrosome and mitochondrial function (IPIAH) was 14.82 +/- 1.49% (CT) and 15.83 +/- 1.26% (AT) to glycerol, 9.20 +/- 1.31% (CT) and 9.92 +/- 1.29% (AT) to ethylene glycol 4.65 +/- 0.93% (CT) and 5.17 +/- 0.87% (AT) to dimethyl formamide. Glycerol provided the best results, although nearly 85% of spermatozoa showed some degree of injury in their membranes, suggesting that further studies are required to improve the results of cryopreservation of bovine semen.
Resumo:
The objective of this study was to evaluate the quality of bovine frozen-thawed sperm cells after Percoll gradient centrifugation. Frozen semen doses were obtained from six bulls of different breeds, including three taurine and three Zebu animals. Four ejaculates per bull were evaluated before and after discontinuous Percoll gradient centrifugation. Sperm motility was assessed by computer-assisted semen analysis and the integrity of the plasma and acrosomal membranes, as well as mitochondrial function, were evaluated using a combination of fluorescent probes propidium iodide, fluorescein isothiocyanate-conjugated Pisum sativum agglutinin and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide. The procedure of Percoll gradient centrifugation increased the percentage of total and progressive sperm motility, beat frequency, rectilinear motility, linearity and rapidly moving cells. In addition, the percentage of cells with intact plasma membrane and mitochondrial membrane potential was increased in post-centrifugation samples. However, the percentage of sperm cells with intact acrosomal membrane was markedly reduced. The method used selected the motile cells with intact plasma membrane and higher mitochondrial functionality in frozen-thawed bull semen, but processing, centrifugation and/or the Percoll medium caused damage to the acrosomal membrane.
Resumo:
Purpose: To report the clinical outcome of the treatment of dry eyes using 0.03% tacrolimus eye drops (olive oil + tacrolimus 0.03%) (Ophthalmos, Sao Paulo, Brazil). Methods: Sixteen eyes of 8 patients with Sjogren syndrome dry eyes (age, 51.13 +/- 9.45 years) were enrolled in this study (prospective noncontrolled interventional case series). Patients were instructed to use topical 0.03% tacrolimus eye drops twice a day (every 12 hours) in the lower conjunctival sac. Schirmer I test, break-up time, corneal fluorescein, and rose bengal staining score were performed in all patients 1 day before, and 14, 28, and 90 days after treatment with 0.03% tacrolimus eye drops. Results: The average fluorescein staining and rose bengal staining scores improved statistically significantly after 14 days of treatment and improved even more after 28 and 90 days. The average Schirmer I test did not improve statistically significantly after 28 days of treatment, although we did observe a significant improvement after 90 days of treatment with 0.03% tacrolimus eye drops. The average break-up time did not improve statistically after 14 days of treatment, although we observed a significant improvement after 28 and 90 days of treatment with 0.03% tacrolimus eye drops. Conclusions: Topical 0.03% tacrolimus eye drops successfully improved tear stability and ocular surface status in patients with dry eyes.
Resumo:
Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.