12 resultados para flow injection
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I) in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 x 10(-4) mol L-1 to 1.1 x 10(-3) mol L-1 with a detection limit of 8.0 x 10(-5) mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 x 10(-4) mol L-1 captopril (n = 12) were obtained. The sample throughput was 40 h(-1) and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.
Resumo:
The main goal of this work was to develop a simple analytical method for quantification of glycerol based on the electrocatalytic oxidation of glycerol on the copper surface adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with glycerol concentration over the range 60-3200 mg kg(-1) (equivalent to 3-160 mg L(-1) in solution). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 5% (n = 10), and the detection limit of the method was estimated to be 5 mg kg(-1) in biodiesel (equivalent to 250 mu g L(-1) in solution) (S/N = 3). The sample throughput under optimised conditions was estimated to be 90 h(-1). Different types of biodiesel samples (B100), as in the types of vegetable oils or animal fats used to produce the fuels, were analysed (seven samples). The only sample pre-treatment used was an extraction of glycerol from the biodiesel sample containing a ratio of 5 mL of water to 250 mg of biodiesel. The proposed method improves the analytical parameters obtained by other electroanalytical methods for quantification of glycerol in biodiesel samples, and its accuracy was evaluated using a spike-and-recovery assay, where all the biodiesel samples used obtained admissible values according to the Association of Official Analytical Chemists. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
This article describes a new design for a paper-based electrochemical system for flow injection analysis. Capillary wicking facilitates a gravity-driven flow of buffer solution continuously through paper and nitrocellulose, from a buffer reservoir at one end of the device to a sink at the other. A difference in height between the reservoir and the sink leads to a continuous and constant flow. The nitrocellulose lies horizontally on a working electrode, which consists of a thin platinum layer deposited on a solid support. The counter and reference electrodes are strategically positioned upstream in the buffer reservoir. A simple pipetting device was developed for reliable application of (sub)microliter volumes of sample without the need of commercial micropipets; this device did not damage the nitrocellulose membrane. Demonstration of the system for the determination of the concentration of glucose in urine resulted in a noninvasive, quantitative assay that could be used for diagnosis and monitoring of diabetes. This method does not require disposable test strips, with enzyme and electrodes, that are thrown away after each measurement Because of its low cost, this system could be used in medical environments that are resource-limited.
Resumo:
Amperometry coupled to flow injection analysis (FIA) and to batch injection analysis (BIA) was used for the rapid and precise quantification of ciclopirox olamine in pharmaceutical products. The favourable hydrodynamic conditions provided by both techniques allowed a very high throughput (more than 300 injections per hour) with good linear range (2.0200 mu mol L-1) and low limits of detection (below 1.0 mu mol?L-1). The results obtained were compared with titration recommended by the American Pharmacopoeia and also using capillary electrophoresis. Good agreement between all results were achieved, demonstrating the good performance of amperometry combined with FIA and BIA.
Resumo:
In this work, a LED (light emitting diode) based photometer for solid phase photometry is described. The photometer was designed to permit direct coupling of a light source (LED) and a photodiode to a flow cell with an optical pathlength of 4 mm. The flow cell was filled with adsorbing solid phase material (C-18), which was used to immobilize the chromogenic reagent 1-(2-thiazolylazo)-2-naphthol (TAN). Aiming to allow accuracy assessment, samples were also analyzed employing ICP OES (inductively coupled plasma optical emission spectrometry) methodology. Applying the paired t-test at the 95% confidence level, no significant difference was observed. Other useful features were also achieved: linear response ranging from 0.05 to 0.85 mg L-1 Zn, limit of detection of 9 mu g L-1 Zn (3 sigma criterion), standard deviation of 1.4% (n = 10), sampling throughput of 36 determinations per h, and a waste generation and reagent consumption of 1.7 mL and of 0.03 mu g per determination, respectively.
Resumo:
Neste trabalho é proposto um fotômetro baseado em LED (diodo emissor de luz) para fotometria em fase sólida. O fotômetro foi desenvolvido para permitir o acoplamento da fonte de radiação (LED) e do fotodetector direto na cela de fluxo, tendo um caminho óptico de 4 mm. A cela de fluxo foi preenchida com material sólido (C18), o qual foi utilizado para imobilizar o reagente cromogênico 1-(2-tiazolilazo)-2-naftol (TAN). A exatidão foi avaliada empregando dados obtidos através da técnica ICP OES (espectrometria de emissão por plasma indutivamente acoplado). Aplicando-se o teste-t pareado não foi observada diferença significativa em nível de confiança de 95%. Outros parâmetros importantes encontrados foram faixa de resposta linear de 0,05 a 0,85 mg L-1 Zn, limite de detecção de 9 µg L-1 Zn (n = 3), desvio padrão de 1,4 % (n = 10), frequência de amostragem de 36 determinações por h, e uma geração de efluente e consumo de reagente de 1,7 mL e 0,03 µg por determinação, respectivamente.
Resumo:
The chemiluminescent reactions of bis(2,4,6-trichlorophenyl)oxalate (TCPO) and bis(2-nitrophenyl)oxalate (2-NPO) with hydrogen peroxide in acetonitrile/water micellar systems (anionic, cationic, and non-ionic) and gamma-cyclodextrin were studied in the presence of fluoranthene or 9,10-diphenylanthracene, imidazole, and two buffer solutions, HTRIS+/TRIS and H2PO4-/HPO42-. The relative chemiluminenscence (CL) intensity is higher in the presence of the cationic (DDAB, CTAC, DODAC, and OTAC), anionic (SDS), and non-ionic (Tween 80) surfactants. In the presence of some non-ionic surfactants (Brij 35, Brij 76, and Tween 20), the CL intensity was partially quenched compared with the reaction with no surfactant. The sensitivity for hydrogen peroxide determination in the range 0.01 x 10(-4) to 1.0 x 10(-4) mol L-1, considering the slope of the calibration curves (maximum peak height of CL vs. concentration), improved with the introduction of DDAH, CTAB, and SDS in HTRIS+/TRIS buffer.
Resumo:
The aim of this study is to develop a new enzymeless electroanalytical method for the indirect quantification of creatinine from urine sample. This method is based on the electrochemical monitoring of picrate anion reduction at a glassy carbon electrode in an alkaline medium before and after it has reacted with creatinine (Jaffe's reaction). By using the differential pulse voltammetry technique under the optimum experimental conditions (step potential, amplitude potential, reaction time, and temperature), a linear analytical curve was obtained for concentrations of creatinine ranging from 1 to 80 mu mol L-1, with a detection limit of 380 nmol L-1. This proposed method was used to measure creatinine in human urine without the interference of most common organic species normally present in biological fluids (e.g., uric acid, ascorbic acid, glucose, and phosphocreatinine). The results obtained using urine samples were highly similar to the results obtained using the reference spectrophotometric method (at a 95% confidence level). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Nowadays, the attainment of microsystems that integrate most of the stages involved in an analytical process has raised an enormous interest in several research fields. This approach provides experimental set-ups of increased robustness and reliability, which simplify their application to in-line and continuous biomedical and environmental monitoring. In this work, a novel, compact and autonomous microanalyzer aimed at multiwavelength colorimetric determinations is presented. It integrates the microfluidics (a three-dimensional mixer and a 25 mm length "Z-shape" optical flow-cell), a highly versatile multiwavelength optical detection system and the associated electronics for signal processing and drive, all in the same device. The flexibility provided by its design allows the microanalyzer to be operated either in single fixed mode to provide a dedicated photometer or in multiple wavelength mode to obtain discrete pseudospectra. To increase its reliability, automate its operation and allow it to work under unattended conditions, a multicommutation sub-system was developed and integrated with the experimental set-up. The device was initially evaluated in the absence of chemical reactions using four acidochromic dyes and later applied to determine some key environmental parameters such as phenol index, chromium(VI) and nitrite ions. Results were comparable with those obtained with commercial instrumentation and allowed to demonstrate the versatility of the proposed microanalyzer as an autonomous and portable device able to be applied to other analytical methodologies based on colorimetric determinations.
Resumo:
A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.
Resumo:
Terbinafine hydrochloride (TerbHCl) is an allylamine derivative with fungicidal action, especially against dermatophytes. Different analytical methods have been reported for quantifying TerbHCl in different samples. These procedures require time-consuming sample preparation or expensive instrumentation. In this paper, electrochemical methods involving capillary electrophoresis with contactless conductivity detection, and amperometry associated with batch injection analysis, are described for the determination of TerbHCl in pharmaceutical products. In the capillary electrophoresis experiments, terbinafine was protonated and analyzed in the cationic form in less than 1 min. A linear range from 1.46 to 36.4 mu g mL(-1) in acetate buffer solution and a detection limit of 0.11 mu g mL(-1) were achieved. In the amperometric studies, terbinafine was oxidized at +0.85 V with high throughput (225 injection h(-1)) and good linear range (10-100 mu mol L-1). It was also possible to determine the antifungal agent using simultaneous conductometric and potentiometric titrations in the presence of 5% ethanol. The electrochemical methods were applied to the quantification of TerbHCl in different tablet samples; the results were comparable with values indicated by the manufacturer and those found using titrimetry according to the Pharmacopoeia. The electrochemical methods are simple, rapid and an appropriate alternative for quantifying this drug in real samples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The use of the core-annular flow pattern, where a thin fluid surrounds a very viscous one, has been suggested as an attractive artificial-lift method for heavy oils in the current Brazilian ultra-deepwater production scenario. This paper reports the pressure drop measurements and the core-annular flow observed in a 2 7/8-inch and 300 meter deep pilot-scale well conveying a mixture of heavy crude oil (2000 mPa.s and 950 kg/m3 at 35 C) and water at several combinations of the individual flow rates. The two-phase pressure drop data are compared with those of single-phase oil flow to assess the gains due to water injection. Another issue is the handling of the core-annular flow once it has been established. High-frequency pressure-gradient signals were collected and a treatment based on the Gabor transform together with neural networks is proposed as a promising solution for monitoring and control. The preliminary results are encouraging. The pilot-scale tests, including long-term experiments, were conducted in order to investigate the applicability of using water to transport heavy oils in actual wells. It represents an important step towards the full scale application of the proposed artificial-lift technology. The registered improvements in terms of oil production rate and pressure drop reductions are remarkable.