8 resultados para ensembles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P-N (z(1), ... , z(N)) = Z(N)(-1)e(-N)Sigma(N)(i=1) V-alpha(z(i)) Pi(1 <= i<j <= N) vertical bar z(i) - z(j)vertical bar(2), where V-alpha(z) = vertical bar z vertical bar(alpha), z epsilon C and alpha epsilon inverted left perpendicular0, infinity inverted right perpendicular. Asymptotic formulas with error estimate on sectors are obtained. A corollary of these expansions is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal-Bargmann space. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688293]
Resumo:
The statistical properties of trajectories of eigenvalues of Gaussian complex matrices whose Hermitian condition is progressively broken are investigated. It is shown how the ordering on the real axis of the real eigenvalues is reflected in the structure of the trajectories and also in the final distribution of the eigenvalues in the complex plane.
Resumo:
This article reports on the influence of the magnetization damping on dynamic hysteresis loops in single-domain particles with uniaxial anisotropy. The approach is based on the Neel-Brown theory and the hierarchy of differential recurrence relations, which follow from averaging over the realizations of the stochastic Landau-Lifshitz equation. A new method of solution is proposed, where the resulting system of differential equations is solved directly using optimized algorithms to explore its sparsity. All parameters involved in uniaxial systems are treated in detail, with particular attention given to the frequency dependence. It is shown that in the ferromagnetic resonance region, novel phenomena are observed for even moderately low values of the damping. The hysteresis loops assume remarkably unusual shapes, which are also followed by a pronounced reduction of their heights. Also demonstrated is that these features remain for randomly oriented ensembles and, moreover, are approximately independent of temperature and particle size. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684629]
Resumo:
In this work we present the idea of how generalized ensembles can be used to simplify the operational study of non-additive physical systems. As alternative of the usual methods of direct integration or mean-field theory, we show how the solution of the Ising model with infinite-range interactions is obtained by using a generalized canonical ensemble. We describe how the thermodynamical properties of this model in the presence of an external magnetic field are founded by simple parametric equations. Without impairing the usual interpretation, we obtain an identical critical behaviour as observed in traditional approaches.
Resumo:
We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.
Resumo:
We study the effects of spin accumulation (inside reservoirs) on electronic transport with tunneling and reflections at the gates of a quantum dot. Within the stub model, the calculations focus on the current-current correlation function for the flux of electrons injected into the quantum dot. The linear response theory used allows us to obtain the noise power in the regime of thermal crossover as a function of parameters that reveal the spin polarization at the reservoirs. The calculation is performed employing diagrammatic integration within the universal groups (ensembles of Dyson) for a nonideal, nonequilibrium chaotic quantum dot. We show that changes in the spin distribution determine significant alterations in noise behavior at values of the tunneling rates close to zero, in the regime of strong reflection at the gates.
Resumo:
It has been recently shown numerically that the transition from integrability to chaos in quantum systems and the corresponding spectral fluctuations are characterized by 1/f(alpha) noise with 1 <= alpha <= 2. The system of interacting trapped bosons is inhomogeneous and complex. The presence of an external harmonic trap makes it more interesting as, in the atomic trap, the bosons occupy partly degenerate single-particle states. Earlier theoretical and experimental results show that at zero temperature the low-lying levels are of a collective nature and high-lying excitations are of a single-particle nature. We observe that for few bosons, the P(s) distribution shows the Shnirelman peak, which exhibits a large number of quasidegenerate states. For a large number of bosons the low-lying levels are strongly affected by the interatomic interaction, and the corresponding level fluctuation shows a transition to a Wigner distribution with an increase in particle number. It does not follow Gaussian orthogonal ensemble random matrix predictions. For high-lying levels we observe the uncorrelated Poisson distribution. Thus it may be a very realistic system to prove that 1/f(alpha) noise is ubiquitous in nature.
Resumo:
It is a well-established fact that statistical properties of energy-level spectra are the most efficient tool to characterize nonintegrable quantum systems. The statistical behavior of different systems such as complex atoms, atomic nuclei, two-dimensional Hamiltonians, quantum billiards, and noninteracting many bosons has been studied. The study of statistical properties and spectral fluctuations in interacting many-boson systems has developed interest in this direction. We are especially interested in weakly interacting trapped bosons in the context of Bose-Einstein condensation (BEC) as the energy spectrum shows a transition from a collective nature to a single-particle nature with an increase in the number of levels. However this has received less attention as it is believed that the system may exhibit Poisson-like fluctuations due to the existence of an external harmonic trap. Here we compute numerically the energy levels of the zero-temperature many-boson systems which are weakly interacting through the van der Waals potential and are confined in the three-dimensional harmonic potential. We study the nearest-neighbor spacing distribution and the spectral rigidity by unfolding the spectrum. It is found that an increase in the number of energy levels for repulsive BEC induces a transition from a Wigner-like form displaying level repulsion to the Poisson distribution for P(s). It does not follow the Gaussian orthogonal ensemble prediction. For repulsive interaction, the lower levels are correlated and manifest level-repulsion. For intermediate levels P(s) shows mixed statistics, which clearly signifies the existence of two energy scales: external trap and interatomic interaction, whereas for very high levels the trapping potential dominates, generating a Poisson distribution. Comparison with mean-field results for lower levels are also presented. For attractive BEC near the critical point we observe the Shnirelman-like peak near s = 0, which signifies the presence of a large number of quasidegenerate states.