25 resultados para endothelial progenitor cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Aerobic exercise training has been established as an important nonpharmacological treatment for hypertension. We investigated whether the number and function of endothelial progenitor cells (EPCs) are restored after exercise training, potentially contributing to neovascularization in hypertension. Methods: Twelve-week-old male spontaneously hypertensive rats (SHRs, n = 14) and Wistar Kyoto (WKY, n = 14) rats were assigned to four groups: SHR; trained SHR (SHR-T); WKY; and trained WKY. Exercise training consisted of 10 weeks of swimming. EPC number and function, as well as the vascular endothelial growth factor (VEGF), nitrotyrosine and nitrite concentration in peripheral blood were quantified by fluorescence-activated cell sorter analysis (CD34+/Flk1+ cells), colony-forming unit assay, ELISA and nitric oxide (NO) analyzer, respectively. Soleus capillary/fiber ratio and protein expression of VEGF and endothelial NO synthase (eNOS) by western blot were assessed. Results: Exercise training was effective in reducing blood pressure in SHR-T accompanied by resting bradycardia, an increase in exercise tolerance, peak oxygen uptake (VO2) and citrate synthase activity. In response to hypertension, the amount of peripheral blood-EPC and number of colonies were decreased in comparison with control levels. In contrast, exercise training normalized the EPC levels and function in SHR-T accompanied by an increase in VEGF and NO levels. In addition, oxidative stress levels were normalized in SHR-T. Similar results were found in the number and function of bone marrow EPC. Exercise training repaired the peripheral capillary rarefaction in hypertension by a signaling pathway VEGF/eNOS-dependent in SHR-T. Moreover, improvement in EPC was significantly related to angiogenesis. Conclusion: Our data show that exercise training repairs the impairment of EPC in hypertension, which could be associated with peripheral revascularization, suggesting a mechanism for its potential therapeutic: application in vascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sao Paulo Research Foundation [FAPESP/05/57710-3]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antidepressant fluoxetine has been under discussion because of its potential influence on cancer risk. It was found to inhibit the development of carcinogen-induced preneoplastic lesions in colon tissue, but the mechanisms of action are not well understood. Therefore, we investigated anti-proliferative effects, and used HT29 colon tumor cells in vitro, as well as C57BL/6 mice exposed to intra-rectal treatment with the carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) as models. Fluoxetine increased the percentage of HT29 cells in the G(0)/G(1) phase of cell-cycle, and the expression of p27 protein. This was not related to an induction of apoptosis, reactive oxygen species or DNA damage. In vivo, fluoxetine reduced the development of MNNG-induced dysplasia and vascularization-related dysplasia in colon tissue, which was analyzed by histopathological techniques. An anti-proliferative potential of fluoxetine was observed in epithelial and stromal areas. It was accompanied by a reduction of VEGF expression and of the number of cells with angiogenic potential, such as CD133, CD34, and CD31-positive cell clusters. Taken together, our findings suggest that fluoxetine treatment targets steps of early colon carcinogenesis. This confirms its protective potential, explaining at least partially the lower colon cancer risk under antidepressant therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported the development of a lethal myeloid sarcoma in a non-human primate model utilizing retroviral vectors to genetically modify hematopoietic stem and progenitor cells. This leukemia was characterized by insertion of the vector provirus into the BCL2A1 gene, with resultant BCL2A1 over-expression. There is little information on the role of this anti-apoptotic member of the BCL2 family in hematopoiesis or leukemia induction. Therefore we studied the impact of Bcl2a1a lentiviral over-expression on murine hematopoietic stem and progenitor cells. We demonstrated the anti-apoptotic function of this protein in hematopoietic cells, but did not detect any impact of Bcl2a1a on in vitro cell growth or cell cycle kinetics. In vivo, we showed a higher propensity of HSCs over-expressing Bcl2a1a to engraft and contribute to hematopoiesis. Mice over-expressing Bcl2a1a in the hematologic compartment eventually developed an aggressive malignant disease characterized as a leukemia/lymphoma of B-cell origin. Secondary transplants carried out to investigate the primitive origin of the disease revealed the leukemia was transplantable. Thus, Bcl2a1 should be considered as a protooncogene with a potential role in both lymphoid and myeloid leukemogenesis, and a concerning site for insertional activation by integrating retroviral vectors utilized in hematopoietic stem cell gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 mu M CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFN gamma through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPAR gamma receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2 alpha, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2 alpha induced by LPS/IFN gamma. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation. Cell Death and Disease (2012) 3, e331; doi:10.1038/cddis.2012.71; published online 28 June 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The National Institute for Clinical Excellence (NICE) guidelines recommend the use of bare-metal stents (BMS) in non-complex lesions with a low risk of restenosis (diameter a parts per thousand yen3 mm and lesion length a parts per thousand currency sign15 mm) and the use of drug-eluting stents (DES) in more complex lesions with a high risk of restenosis (diameter < 3.0 mm or lesion length > 15 mm). However, the guidelines were created based on studies evaluating BMS and DES only. We performed an analysis of patients undergoing non-urgent percutaneous coronary intervention with the novel endothelial cell capturing stent (ECS). The ECS is coated with CD34(+) antibodies that attract circulating endothelial progenitor cells to the stent surface, thereby accelerating the endothelialization of the stented area. We analyzed all patients enrolled in the worldwide e-HEALING registry that met the NICE criteria for either low-risk or high-risk lesions and were treated with a parts per thousand yen1 ECS. The main study outcome was target vessel failure (TVF) at 12-month follow-up, defined as the composite of cardiac death or MI and target vessel revascularization (TVR). A total of 4,241 patients were assessed in the current analysis. At 12-month follow-up, TVF occurred in 7.0% of the patients with low-risk lesions and in 8.8% of the patients with high-risk lesions (p = 0.045). When evaluating the diabetic patients versus the non-diabetic patients per risk group, no significant differences were found in TVF, MI or TVR in either risk group. The ECS shows good clinical outcomes in lesions carrying either a high or a low risk of restenosis according to the NICE guidelines with comparable rates of cardiac death, myocardial infarction, and stent thrombosis. The TVF rate with ECS was slightly higher in patients with high-risk lesions, driven by higher clinically driven TLR. The risk of restenosis with ECS in patients carrying high-risk lesions needs to be carefully considered relative to other risks associated with DES. Furthermore, the presence of diabetes mellitus did not influence the incidence of TVF in either risk group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr-/-) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr-/- mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The umbilical cord blood (UCB) is an important source of hematopoietic stem cells with great deal of interest in regenerative medicine. The UCB cells have been extensively studied as an alternative to the bone marrow transplants. The challenge is to define specific methods to purify and characterize these cells in different animal species. This study is aimed at morphological characterization of progenitor cells derived from UCB highlighting relevant differences with peripheral blood of adult in dog and cats. Therefore, blood was collected from 18 dogs and 5 cats' umbilical cords from fetus in various developmental stages. The mononuclear cells were separated using the gradient of density Histopaque-1077. Characterization of CD34+ cells was performed by flow cytometric analysis and transmission electron microscopy. Granulocytes (ancestry of the basophiles, eosinophiles, and neutrophiles) and agranulocytes (represented by immature lymphocytes) were identified. We showed for the first time the ultrastructural features of cat UCB cells. Microsc. Res. Tech. 75:766770, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The e-Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth (e-HEALING) registry was designed to capture clinical data on the use of the endothelial progenitor cell capture stent (ECS) in routine clinical practice. In this analysis, we investigated the 12-month clinical outcomes in patients treated with an ECS for a bifurcation lesion. Methods The worldwide, prospective, nonrandomized e-HEALING registry aimed to enrol 5000 patients treated for coronary artery disease with one or more ECS between October 2005 and October 2007. Clinical follow-up was obtained at 1, 6, and 12 months. The primary endpoint was target vessel failure (TVF), defined as the composite of cardiac death, myocardial infarction, and target vessel revascularization at 12 months. Results A total of 573 patients were treated for at least one bifurcation lesion and were assessed in the current analysis. Baseline characteristics showed a median age of 65 years; 21% were diabetic patients and 36% had unstable angina. A total of 63% of the bifurcation lesions were located in the left artery descending and the mean stent length was 20.7 +/- 12.6 mm. At 12 months, TVF was 12.7% and target lesion revascularization was 7.5%. Definite or probable stent thrombosis occurred in 1.7% of the patients. Moreover, one or more stents per lesion [hazard ratio (HR): 2.79, 95% confidence interval (CI): 1.60-4.86, P < 0.001], predilatation (HR: 0.39, 95% CI: 0.17-0.87, P = 0.023), and lesions located in the right coronary artery (HR: 4.56, 95% CI: 1.07-19.5, P = 0.041) were independent predictors of TVF. Conclusion In the e-HEALING registry, coronary bifurcation stenting with the ECS results in favorable clinical outcomes and low incidences of repeat revascularization and stent thrombosis. Coron Artery Dis 23:201-207 (C) 2012 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-beta. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of Sao Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results: We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion: We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Study design: Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pericyte perivascular cells, believed to originate mesenchymal stem cells (MSC), are characterized by their capability to differentiate into various phenotypes and participate in tissue reconstruction of different organs, including the brain. We show that these cells can be induced to differentiation into neural-like phenotypes. For these studies, pericytes were obtained from aorta ex-plants of Sprague-Dawley rats and differentiated into neural cells following induction with trans retinoic acid (RA) in serum-free defined media or differentiation media containing nerve growth and brain-derived neuronal factor, B27, N2, and IBMX. When induced to differentiation with RA, cells express the pluripotency marker protein stage-specific embryonic antigen-1, neural-specific proteins beta 3-tubulin, neurofilament-200, and glial fibrillary acidic protein, suggesting that pericytes undergo differentiation, similar to that of neuroectodermal cells. Differentiated cells respond with intracellular calcium transients to membrane depolarization by KCl indicating the presence of voltage-gated ion channels and express functional N-methyl-D-aspartate receptors, characteristic for functional neurons. The study of neural differentiation of pericytes contributes to the understanding of induction of neuroectodermal differentiation as well as providing a new possible stem-cell source for cell regeneration therapy in the brain. (C) 2011 International Society for Advancement of Cytometry

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Isolation of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) from full-term deliveries is a laborious, time-consuming process that results in a low yield of cells. In this study we identified parameters that can be helpful for a successful isolation of UCB-MSCs. According to our findings, chances for a well succeeded isolation of these cells are higher when MSCs were isolated from UCB collected from normal full-term pregnancies that did not last over 37 weeks. Besides the duration of pregnancy, blood volume and storage period of the UCB should also be considered for a successful isolation of these cells. Here, we found that the ideal blood volume collected should be above 80 mL and the period of storage should not exceed 6 h. We characterized UCB-MSCs by morphologic, immunophenotypic, protein/gene expression and by adipogenic differentiation potential. Isolated UCB-MSCs showed fibroblast-like morphology and the capacity of differentiating into adipocyte-like cells. Looking for markers of the undifferentiated status of UCB-MSCs, we analyzed the UCB-MSCs' protein expression profile along different time periods of the differentiation process into adipocyte-like cells. Our results showed that there is a decrease in the expression of the markers CD73, CD90, and CD105 that correlates to the degree of differentiation of UCB-MSCs We suggest that CD90 can be used as a mark to follow the differentiation commitment degree of MSCs. Microarray results showed an up-regulation of genes related to the adipogenesis process and to redox metabolism in the adipocyte-like differentiated MSCs. Our study provides information on a group of parameters that may help with successful isolation and consequently with characterization of the differentiated/undifferentiated status of UCB-MSCs, which will be useful to monitor the differentiation commitment of UCB-MSC and further facilitate the application of those cells in stem-cell therapy.