5 resultados para electric variables measurement
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Dinoflagellates of the genus Ceratium are chiefly marine but there are rare occurrences in freshwater. In this study we analyze the invasion and progressive establishment of Ceratium furcoides, an exotic species, in the Furnas Reservoir. Samples were taken at 36 points in the reservoir, during the months of March, June, September and December, 2007. Measurements of some physical and chemical variables were simultaneously performed at each site. The occurrence of C. furcoides was registered at 20 sites, with densities varying between 0.57 and 28,564,913.0 ind.m(-3). Blooms of this species were recorded in points which were classified as mesotrophic, coinciding with the places receiving high amounts of untreated domestic sewage. C. furcoides density was correlated with temperature, nutrients (nitrate and nitrite) and water electric conductivity. The highest density was recorded in June when temperature was low. The presence of Ceratium furcoides in the reservoir apparently has not yet affected the reservoir water quality or other plankton communities. However, if it becomes fully established it could perhaps become a problem in the reservoir or even to spread out to other reservoirs in Rio Grande basin.
Resumo:
The main goal of this article is to consider influence assessment in models with error-prone observations and variances of the measurement errors changing across observations. The techniques enable to identify potential influential elements and also to quantify the effects of perturbations in these elements on some results of interest. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Dinoflagellates of the genus Ceratium are chiefly marine but there are rare occurrences in freshwater. In this study we analyze the invasion and progressive establishment of Ceratium furcoides, an exotic species, in the Furnas Reservoir. Samples were taken at 36 points in the reservoir, during the months of March, June, September and December, 2007. Measurements of some physical and chemical variables were simultaneously performed at each site. The occurrence of C. furcoides was registered at 20 sites, with densities varying between 0.57 and 28,564,913.0 ind.m-3. Blooms of this species were recorded in points which were classified as mesotrophic, coinciding with the places receiving high amounts of untreated domestic sewage. C. furcoides density was correlated with temperature, nutrients (nitrate and nitrite) and water electric conductivity. The highest density was recorded in June when temperature was low. The presence of Ceratium furcoides in the reservoir apparently has not yet affected the reservoir water quality or other plankton communities. However, if it becomes fully established it could perhaps become a problem in the reservoir or even to spread out to other reservoirs in Rio Grande basin.
Resumo:
The recent advances and promises in nanoscience and nanotechnology have been focused on hexagonal materials, mainly on carbon-based nanostructures. Recently, new candidates have been raised, where the greatest efforts are devoted to a new hexagonal and buckled material made of silicon, named Silicene. This new material presents an energy gap due to spin-orbit interaction of approximately 1.5 meV, where the measurement of quantum spin Hall effect(QSHE) can be made experimentally. Some investigations also show that the QSHE in 2D low-buckled hexagonal structures of germanium is present. Since the similarities, and at the same time the differences, between Si and Ge, over the years, have motivated a lot of investigations in these materials. In this work we performed systematic investigations on the electronic structure and band topology in both ordered and disordered SixGe1-x alloys monolayer with 2D honeycomb geometry by first-principles calculations. We show that an applied electric field can tune the gap size for both alloys. However, as a function of electric field, the disordered alloy presents a W-shaped behavior, similarly to the pure Si or Ge, whereas for the ordered alloy a V-shaped behavior is observed.