19 resultados para drug development

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human African trypanosomiasis, also known as sleeping sickness, is a major cause of death in Africa, and for which there are no safe and effective treatments available. The enzyme aldolase from Trypanosoma brucei is an attractive, validated target for drug development. A series of alkyl‑glycolamido and alkyl-monoglycolate derivatives was studied employing a combination of drug design approaches. Three-dimensional quantitative structure-activity relationships (3D QSAR) models were generated using the comparative molecular field analysis (CoMFA). Significant results were obtained for the best QSAR model (r2 = 0.95, non-cross-validated correlation coefficient, and q2 = 0.80, cross-validated correlation coefficient), indicating its predictive ability for untested compounds. The model was then used to predict values of the dependent variables (pKi) of an external test set,the predicted values were in good agreement with the experimental results. The integration of 3D QSAR, molecular docking and molecular dynamics simulations provided further insight into the structural basis for selective inhibition of the target enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphoglycerate mutases (PGAMs) participate in both the glycolytic and the gluconeogenic pathways in reversible isomerization of 3-phosphoglycerate and 2-phosphoglycerate. PGAMs are members of two distinct protein families: enzymes that are dependent on or independent of the 2,3-bisphosphoglycerate cofactor. We determined the X-ray structure of the monomeric Trypanosoma brucei independent PGAM (TbiPGAM) in its apoenzyme form, and confirmed this observation by small angle X-ray scattering data. Comparing the TbiPGAM structure with the Leishmania mexicana independent PGAM structure, previously reported with a phosphoglycerate molecule bound to the active site, revealed the domain movement resulting from active site occupation. The structure reported here shows the interaction between Asp319 and the metal bound to the active site, and its contribution to the domain movement. Substitution of the metal-binding residue Asp319 by Ala resulted in complete loss of independent PGAM activity, and showed for the first time its involvement in the enzymes function. As TbiPGAM is an attractive molecular target for drug development, the apoenzyme conformation described here provides opportunities for its use in structure-based drug design approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conventional treatment of tuberculosis (TB) demands a long course therapy (6 months), known to originate multiple drug resistant strains (MDR-TB), which emphasizes the urgent need for new antituberculous drugs. The purpose of this study was to investigate a novel treatment for TB meant to improve patient compliance by reducing drug dosage frequency. Polymeric microparticles containing the synthetic analogue of neolignan, 1-phenyl-2-phenoxiethanone (LS-2), were obtained by a method of emulsification and solvent evaporation and chemically characterized. Only representative LS-2-loaded microparticles were considered for further studies involving experimental murine TB induced by Mycobacterium tuberculosis H37Rv ATCC 27294. The LS-2-loaded microparticles were spherical in shape, had a smooth wall and showed an encapsulation efficiency of 93% in addition to displaying sustained release. Chemotherapeutic potential of LS-2 entrapped in microparticles was comparable to control groups. These findings are encouraging and indicate that LS-2-loaded microparticles are a potential alternative to conventional chemotherapy of TB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphoethanolamine (Pho-s) is a compound involved in phospholipid turnover, acting as a substrate for many phospholipids of the cell membranes, especially phosphatidylcholine. We recently reported that synthetic Pho-s has potent effects on a wide variety of tumor cells. To determine if Pho-s has a potential antitumor activity, in this study we evaluated the activity of Pho-s against the B16-F10 melanoma both in vitro and in mice bearing a dorsal tumor. The treatment of B16F10 cells with Pho-s resulted in a dose-dependent inhibition of cell proliferation. At low concentrations, this activity appears to be involved in the arrest of the cell cycle at G2/M, while at high concentrations Pho-s induces apoptosis. In accordance with these results, the loss of mitochondrial potential and increased caspase-3 activity suggest that Phos has dual antitumor effects; i.e. it induces apoptosis at high concentrations and modulates the cell cycle at lower concentrations. In vivo, we evaluated the effect of Pho-s in mice bearing B16-F10 melanoma. The results show that Pho-s reduces the tumoral volume increasing survival rate. Furthermore, the tumor doubling time and tumor delays were substantially reduced when compared with untreated mice. Histological analyses reveal that Pho-s induces changes in cell morphology, typical characteristics of apoptosis, in addition the large areas of necrosis correlating with a reduction of tumor size. The results presented here support the hypothesis that Pho-s has antitumor effects by the induction of apoptosis as well as the inhibition of cell proliferation by arrest at G2/M. Thus, Pho-s can be regarded as a promising agent for the treatment of melanoma. Published by Elsevier Masson SAS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathophysiology of neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) has not yet been completely elucidated. However, in the past few years, there have been great knowledge advances about intra-and extracellular proteins that may display impaired function or expression in AD, PD and other ND, such as amyloid beta (AB), alpha-synuclein, tau protein and neuroinfiammatory markers. Recent developments in the imaging techniques of positron emission tomography (PET) and single photon emission computed tomography (SPECT) now allow the non-invasive tracking of such molecular targets of known relevance to ND in vivo. This article summarizes recent findings of PET and SPECT studies using these novel methods, and discusses their potential role in the field of drug development for ND as well as future clinical applications in regard to differential diagnosis of ND and monitoring of disease progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to induce apoptosis is an important marker for cytotoxic antitumor agents. Some natural compounds have been shown to modulate apoptosis pathways that are frequently blocked in human cancers, and therefore, these compounds provide novel opportunities for cancer drug development. Phyllanthus, a plant genus of the family Euphorbiaceae, exhibits multiple pharmacological actions. Of these, Phyllanthus niruri extracts exhibit significant antitumor activity, which is consistent with the traditional medicinal use of this plant. To examine the apoptotic effects of a spray-dried extract of P. niruri (SDEPN), human hepatocellular carcinoma cells (HepG2, Huh-7), colorectal carcinoma cells (Ht29) and keratinocytes (HaCaT) were exposed to the extract for 4, 8 and 24 h. Flow cytometry and caspase-3 immunostaining were used to detect apoptosis, while analysis of variance was applied to identify significant differences between groups (P < 0.05). At all timepoints, the SDEPN induced significantly different cytotoxic effects for HepG2 and Huh-7 cells compared with control cells (P < 0.001). In contrast, the SDEPN had a protective effect on HaCaT cells compared with control cells at all timepoints (P < 0.001). In caspase-3 assays, activation was detected after cell death was induced in Huh-7 and HepG2 cancer cells by the SDEPN. In combination, these results indicate that the SDEPN is selectively toxic towards cancer cell lines, yet is protective towards normal cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutrophil migration to inflamed sites is crucial for both the initiation of inflammation and resolution of infection, yet these cells are involved in perpetuation of different chronic inflammatory diseases. Gastrin-releasing peptide (GRP) is a neuropeptide that acts through G protein coupled receptors (GPCRs) involved in signal transmission in both central and peripheral nervous systems. Its receptor, gastrin-releasing peptide receptor (GRPR), is expressed by various cell types, and it is overexpressed in cancer cells. RC-3095 is a selective GRPR antagonist, recently found to have antiinflammatory properties in arthritis and sepsis models. Here we demonstrate that i.p. injection of GRP attracts neutrophils in 4 h, and attraction is blocked by RC-3095. Macrophage depletion or neutralization of TNF abrogates GRP-induced neutrophil recruitment to the peritoneum. In vitro, GRP-induced neutrophil migration was dependent on PLC-beta 2, PI3K, ERK, p38 and independent of G alpha i protein, and neutrophil migration toward synovial fluid of arthritis patients was inhibited by treatment with RC-3095. We propose that GRPR is an alternative chemotactic receptor that may play a role in the pathogenesis of inflammatory disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Rhodium (II) citrate (Rh2(H2cit)4) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh2(H2cit)4 as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh2(H2cit)4 and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh2(H2cit)4) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. Results Treatment with free Rh2(H2cit)4 induced cytotoxicity that was dependent on dose, time, and cell line. The IC50 values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 μM Rh2(H2cit)4-loaded maghemite nanoparticles (Magh-Rh2(H2cit)4) and Rh2(H2cit)4-loaded magnetoliposomes (Lip-Magh-Rh2(H2cit)4) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh2(H2cit)4, were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh2(H2cit)4 induces cell death by apoptosis. Conclusions The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh2(H2cit)4 treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh2(H2cit)4 delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Albendazole sulfoxide (ABZSO), a broad spectrum anthelmintic drug extensively used in veterinary medicine, exhibits a low and erratic bioavailability due to its poor solubility in biological fluids. The aims of this study were the development, physicochemical characterization, and in vitro release profile evaluation of ABZSO-loaded Eudragit RS PO (R) microparticles (MPs) in order to improve the rate of dissolution and the dissolved percentage of the drug in pH 7.4. MPs were successfully obtained by the emulsification/solvent evaporation method, achieving entrapment efficiency and process yield of about 60% and mean size of 254 nm. The in vitro release profile study showed that dissolution of ABZSO followed a pseudo-second order kinetics and MPs were able to increase significantly (p < 0.05) the rate of dissolution of ABZSO compared to the micronized and non-micronized free drug, what could lead to an improvement in bioavailability and, consequently, in the antiparasitic activity. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DEVELOPMENT AND VALIDATION OF AN ANALYTICAL METHOD FOR QUANTITATION OF THE DRUG BEVACIZUMAB BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. In this study, an analytical method was developed and validated for quantitation of the drug bevacizumab (Avastin (R)) by high performance liquid chromatography (HPLC). The HPLC column was a BioSuite 250 (R) HR SEC, 300 x 7.8 mm x 5 mu m (Waters, USA). The mobile phase consisted of phosphate buffered saline (PBS). The results revealed that the method was specific, precise. accurate, robust and linear (r(2) = 0.998) from 5 to 75 mu g mL(-1). Therefore, this method can be used in drug release studies or in quality control ampoules of the drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DEVELOPMENT AND VALIDATION OF A HPLC METHOD FOR QUANTIFICATION OF URSOLIC ACID IN SOLID DISPERSIONS. Ursolic acid is a natural molecule that presents several pharmacological properties. In this work, an analytical method by RP-HPLC has been developed and validated for quantification of this drug in the solid dispersions, using PEG 6000 and Poloxamer 407 as polymers. The method was specific, linear in the range of 1.0-50.0 mu g mL(-1) (r<0.99), precise (CV < 5% for both inter-and intra-assays), accurate (maximum deviation of +/- 13%), and robust to the parameters evaluated. This method has proved to be simple and useful for ursolic acid determination in solid dispersions, enabling its determination in pharmaceutical dosage form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss) or (ds) double stranded molecules. The affinities of the protein for ss-vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of,3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells. Citation: Chen P-C, Hayashi MAF, Oliveira EB, Karpel RL (2012) DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 7(11): e48913. doi:10.1371/journal.pone.0048913

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid nanoemulsions (LDE) may be used as carriers of paclitaxel (PTX) and etoposide (ETP) to decrease toxicity and increase the therapeutic action of those drugs. The current study investigates the combined chemotherapy with PTX and ETP associated with LDE. Four groups of 10-20 B16F10 melanoma-bearing mice were treated with LDE-PTX and LDE-ETP in combination (LDE-PTX + ETP), commercial PTX and ETP in combination (PTX + ETP), single LDE-PTX, and single LDE-ETP. PTX and ETX doses were 9 mu mol/kg administered in three intraperitoneal injections on three alternate days. In two control groups mice were treated with saline solution or LDE alone. Tumor growth, metastasis presence, cell-cycle distribution, blood cell counts and histological data were analyzed. Toxicity of all treatments was evaluated in mice without tumors. Tumor growth inhibition was similarly strong in all treatment groups. However, there was a greater reduction in the number of animals bearing metastases in the LDE-PTX + ETP group (30 %) in comparison to the PTX + ETP group (82 %, p < 0.05). Reduction of cellular density, blood vessels and increase of collagen fibers in tumor tissues were observed in the LDE-PTX + ETP group but not in the PTX + ETP group, and in both groups reduced melanoma-related anemia and thrombocytosis were observed. Flow cytometric analysis suggested that LDE-PTX + ETP exhibited greater selectivity to neoplastic cells than PTX-ETP, showing arrest (65 %) in the G(2)/M phase of the cell cycle (p < 0.001). Toxicity manifested by weight loss and myelosuppression was markedly milder in the LDE-PTX + ETP than in the PTX + ETP group. LDE-PTX + ETP combined drug-targeting therapy showed markedly superior anti-cancer properties and reduced toxicity compared to PTX + ETP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes have been employed as potential drug carriers. However, after their in vivo administration, they can be destabilized by proteins of complement system, contributing to the clearance of vesicles from blood circulation. Antioxidant flavonoids such as quercetin have been reported to be beneficial to human health, but their low water solubility and bioavailability limit their enteric administration. Therefore, the development of appropriate flavonoid-carriers could be of great importance to drug therapy. The aim of the present study was to evaluate the activation of human complement system proteins by liposomes composed of soya phosphatidylcholine (SPC) and cholesterol (CHOL) or cholesteryl ethyl ether (CHOL-OET) loaded with quercetin or not. The consumption of complement, via classical (CP) and alternative (AP) pathways, by different vesicles was evaluated using a hemolytic assay and quantitative determination of iC3b and natural antibodies deposited on empty liposomal surfaces by ELISA. The main results showed that empty liposomes composed of large amounts of CHOL consumed more complement components than the others for both CP and AP. Furthermore, replacement of CHOL with CHOL-OET reduced complement consumption via both CP and AP. Incorporation of quercetin did not change CP and AP consumption. Deposition of iC3b, IgG and IgM in vesicles composed of SPC: CHOL-OET at a molar ratio of 1.5:1 was lower compared to the others. Taken together, these observations suggest that liposomes composed of SPC: CHOL-OET at a molar ratio of 1.5:1 are the most appropriate among the vesicles studied herein to be used as a drug carrier system in further investigations.