8 resultados para diluted magnetic semiconductors
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We studied the spin-polarized charge densities in II-VI-based diluted magnetic superlattices formed of p-doped ZnTe:Mg/ZnTe:TM/ZnTe:Mg non-magnetic/magnetic/non-magnetic layers, with TM standing for transition metal. The calculations were performed within a self-consistent k.p method, in which are also taken into account the exchange correlation effects in the local density approximation. Our results show a limit for the width of the non-magnetic layer for which the difference between the opposite spin charge densities is maximized, indicating the best conditions to obtain full polarization by varying the TM content. We also discuss these effects in the calculated photoluminescence spectra. Our findings point to the possibility of engineering the spin-polarized charge distribution by varying the widths of the magnetic and non-magnetic layers and/or varying the TM concentration in the magnetic layers, thus providing a guide for future experiments. (c) 2012 Elsevier B.V. All rights reserved.
Study of the oxygen vacancy influence on magnetic properties of Fe- and Co-doped SnO2 diluted alloys
Resumo:
Transition-metal (TM)-doped diluted magnetic oxides (DMOs) have attracted attention from both experimental and theoretical points of view due to their potential use in spintronics towards new nanostructured devices and new technologies. In the present work, we study the magnetic properties of Sn0.96TM0.04O2 and Sn0.96TM0.04O1.98(V (O))(0.02), where TM = Fe and Co, focusing in particular in the role played by the presence of O vacancies nearby the TM. The calculated total energy as a function of the total magnetic moment per cell shows a magnetic metastability, corresponding to a ground state, respectively, with 2 and 1 mu(B)/cell, for Fe and Co. Two metastable states, with 0 and 4 mu(B)/cell were found for Fe, and a single value, 3 mu(B)/cell, for Co. The spin-crossover energies (E (S)) were calculated. The values are E (S) (0/2) = 107 meV and E (S) (4/2) = 25 meV for Fe. For Co, E (S) (3/1) = 36 meV. By creating O vacancies close to the TM site, we show that the metastablity and E (S) change. For iron, a new state appears, and the state with zero magnetic moment disappears. The ground state is 4 mu(B)/cell instead of 2 mu(B)/cell, and the energy E (S) (2/4) is 30 meV. For cobalt, the ground state is then found with 3 mu(B)/cell and the metastable state with 1 mu(B)/cell. The spin-crossover energy E (S) (1/3) is 21 meV. Our results suggest that these materials may be used in devices for spintronic applications that require different magnetization states.
Resumo:
This work reports evidence of the induced migration of Mn2+ ions in Cd(1-x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Among all magnetic semiconductors, GaMnAs seems to be the most important one. In this work, we present accurate first-principles calculations of GaMnAs within the GGA-1/2 approach: We concentrate our efforts in obtaining the position of the peak of Mn-d levels in the valence band and also the majority spin band gap. For the position of the Mn-d peak, we find a value of 3.3 eV below the Fermi level, in good agreement with the most recent experimental results of 3.5 and 3.7 eV. An analytical expression that fits the calculated E-g(x) for majority spin is derived in order to provide ready access to the band gap for the composition range from 0 to 0.25. We found a value of 3.9 eV for the gap bowing parameter. The results agree well with the most recent experimental data. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718602]
Resumo:
In this paper, we present a method to order low temperature (LT) self-assembled ferromagnetic In1-xMnxAs quantum dots (QDs) grown by molecular beam epitaxy (MBE). The ordered In1-xMnxAs QDs were grown on top of a non-magnetic In0.4Ga0.6As/GaAs(100) QDs multi-layered structure. The modulation of the chemical potential, due to the stacking, provides a nucleation center for the LT In1-xMnxAs QDs. For particular conditions, such as surface morphology and growth conditions, the In1-xMnxAs QDs align along lines like chains. This work also reports the characterization of QDs grown on plain GaAs(100) substrates, as well as of the ordered structures, as function of Mn content and growth temperature. The substitutional Mn incorporation in the InAs lattice and the conditions for obtaining coherent and incoherent structures are discussed from comparison between Raman spectroscopy and x-ray analysis. Ferromagnetic behavior was observed for all structures at 2K. We found that the magnetic moment axis changes from [110] in In1-xMnxAs over GaAs to [1-10] for the ordered In1-xMnxAs grown over GaAs template. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745904]
Resumo:
We have investigated the magnetic and transport properties of nanoscaled Fe3O4 films obtained from Chemical Vapor Deposition (CVD) technique using [(FeFe2III)-Fe-II(OBut)(8)] and [Fe-2(III)(OBut)(6)] precursors. Samples were deposited on different substrates (i.e., MgO (001), MgAl2O4 (001) and Al2O3 (0001)) with thicknesses varying from 50 to 350 nm. Atomic Force Microscopy analysis indicated a granular nature of the samples, irrespective of the synthesis conditions (precursor and deposition temperature, T-pre) and substrate. Despite the similar morphology of the films, magnetic and transport properties were found to depend on the precursor used for deposition. Using [(FeFe2III)-Fe-II(OBut)(8)] as precursor resulted in lower resistivity, higher M-S and a sharper magnetization decrease at the Verwey transition (T-V). The temperature dependence of resistivity was found to depend on the precursor and T-pre. We found that the transport is dominated by the density of antiferromagnetic antiphase boundaries (AF-APB's) when [(FeFe2III)-Fe-II(OBut)(8)] precursor and T-pre = 363 K are used. On the other hand, grain boundary-scattering seems to be the main mechanism when [Fe-2(III)(OBut)(6)] is used. The Magnetoresistance (MR(H)) displayed an approximate linear behavior in the high field regime (H > 796 kA/m), with a maximum value at room-temperature of similar to 2-3 % for H = 1592 kA/m, irrespective from the transport mechanism.
Resumo:
The magnetic susceptibility of Pb(1-x)Ce(x)A (A=S, Se and Te) crystals with Ce3+ concentrations 0.006 <= x <= 0.036 was investigated in the temperature range from 2 K to 300 K. The magnetic susceptibility data was found to be consistent with a E-2(5/2) lowest manifold for Ce3+ ions with a crystal-field splitting Delta=E(Gamma(8))-E(Gamma(7)) of about 340 K, 440 K and 540 K for Pb1-xCexTe, Pb1-xCexSe, and Pb1-xCexS, respectively. For all the three compounds the doublet Gamma(7) lies below the Gamma(8) quadruplet which confirms the substitution of Pb2+ by Ce3+ ions in the host crystals. The observed values for the crystal-field splitting are in good agreement with the calculated ones based on the point-charge model. Moreover, the effective Lande factors were determined by X-band (similar to 9.5 GHz), electron paramagnetic measurements (EPR) to be g=1.333, 1.364, and 1.402 for Ce ions in PbA, A = S. Se and Te, respectively. The small difference with the predicted Lande factor g of 10/7 for the Gamma(7) (J=5/2) ground state was attributed to crystal-field admixture. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The comprehensive control of morphology and structure is of extreme importance in semiconducting polymers when used as active layers in optoelectronic devices. In the work reported here, a systematic investigation of the structural and dynamical properties of poly(9,9-di-n-octyl-fluorene-alt-benzothiadiazole), known as F8BT, and their correlation with electrical properties is presented when the material is used as an active layer in optoelectronic devices. By means of X-ray diffraction, one observes that in thick layer films (thickness of about 4 μm) grown by drop-cast deposition, a solvent induced crystalline phase exists which evolves to a stable phase as the temperature is raised. This was not observed in thin films (thickness of about 250 nm) prepared by spin-coating within the investigated temperature range. By modeling the current-voltages characteristics of both thick and thin film devices, important information on the influence of crystallization on the trapping states could be drawn. Furthermore, the temperature dependence of the charge carrier mobility was found to be closely related to that of the molecular relaxation processes. The understanding of the nature of such molecular relaxations, measured by solid-state nuclear magnetic resonance methods, allows one to understand the importance of molecular relaxations and microstructure changes on the trap states of the system.