20 resultados para digestive system inflammation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.
Resumo:
This theoretical study proposes a reflection on the intrinsic resistance of the subclass Coccidia, particularly the genus Cryptosporidium, considered to be potential pathogens for immunocompromised patients, and the implications for nursing practice. Currently, the international and national guidelines support the chemical disinfection of digestive system endoscopes after their cleansing as a safe and effective procedure. However, studies show that microorganisms of the subclass Coccidia, namely Cryptosporidium, responsible for enteric infection, are more resistant than mycobacteria and are not inactivated by high-level disinfectants, except for hydrogen peroxide 6% and 7.5%, which are not currently available in Brazil. We conclude that the legislation should include this agent among test microorganisms for approving high-level disinfectants. Health authorities should make efforts to ensure that healthcare institutions have access to effective disinfectants against Cryptosporidium.
Resumo:
This research aimed to describe the macroscopic and microscopic liver of tambaqui, Colossoma macropomum, Teleost freshwater Family Characidae, of great economic interest for the Amazon basin. We used six juveniles aged between six month and one year, from the small holding Esteio, Alta Floresta/MT, that develops mainly fish farming. The body was photographed in situ, described macroscopically, and fragments were removed and processed by routine histological techniques through paraffin embedding and HE staining. The liver, located ventrally to the swim bladder and craniodorsally to the stomach, is brownish red and consisted of three lobes, the right lateral, the left lateral and the ventral lobe. Microscopically, the parenchyma consists of hepatocytes varying from irregular rounded hexagonal to round forms with a large and central nucleus, and arranged in linear strings limited by sinusoids and radiating to central veins, but with absence of liver lobules. The central veins are distributed throughout the parenchyma, while the portal space consists in most cases only of a hepatic vein and bile duct; elsewhere exist artery and duct. Formation of portal triads was not founde. Melano macrophages were frequently seen dispersed throughout the central parenchyma. The morphofunctional study of the digestive system of fishes of the Amazon basin is important to obtain knowledge about their weight gain, large scale production for human consumption and preservation of the species, and has also its importance for being used as bioindicators today.
Resumo:
We performed a macroscopic and microscopic study of the tongues of common opossums, Didelphis marsupialis, from South America. We studied two males and two females. We collected morphometric data on the tongue with precision calipers. For the light microscopy and scanning electron microscopy analyses, we fixed tissue fragments in 10% formaldehyde and 2.5% glutaraldehyde, respectively. The opossum tongues averaged 5.87 +/- 0.20 cm in length, 3.27 +/- 0.15 cm in width at the lingual body, and 3.82 +/- 0.15 cm in width at the root. The mean thickness of the lingual body was 1.8 +/- 0.1 cm, and the thickness of the root was 3.82 +/- 0.15 cm. Sharp filiform papillae were scattered across the entire tongue; conical filiform papillae occurred on the lingual body and tongue tip; fungiform papillae were scattered among the filiform papillae on the lingual body and tongue tip; and there were three vallate papillae at the root of the tongue. We found two strands of papillary projections in the tongue root. Despite the low variability observed in the lingual papillae, the morphological data obtained in this study may be related to the opossum's diverse food habits and the extensive geographic distribution of the species throughout America. Microsc. Res. Tech. 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
A cDNA coding for a digestive cathepsin L, denominated Sl-CathL, was isolated from a cDNA library of Sphenophorus levis larvae, representing the most abundant EST (10.49%) responsible for proteolysis in the midgut. The open reading frame of 972 bp encodes a preproenzyme similar to midgut cathepsin L-like enzymes in other coleopterans. Recombinant Sl-CathL was expressed in Pichia pastoris, with molecular mass of about 42 kDa. The recombinant protein was catalytically activated at low pH and the mature enzyme of 39 kDa displayed thermal instability and maximal activity at 37 degrees C and pH 6.0. Immunocytochemical analysis revealed Sl-CathL production in the midgut epithelium and secretion from vesicles containing the enzyme into the gut lumen, confirming an important role for this enzyme in the digestion of the insect larvae. The expression profile identified by RT-PCR through the biological cycle indicates that Sl-CathL is mainly produced in larval stages, with peak expression in 30-day-old larvae. At this stage, the enzyme is 1250-fold more expressed than in the pupal fase, in which the lowest expression level is detected. This enzyme is also produced in the adult stage, albeit in lesser abundance, assuming the presence of a different array of enzymes in the digestive system of adults. Tissue-specific analysis revealed that Sl-CathL mRNA synthesis occurs fundamentally in the larval midgut, thereby confirming its function as a digestive enzyme, as detected in immunolocalization assays. The catalytic efficiency of the purified recombinant enzyme was calculated using different substrates (Z-Leu-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC) and rSl-CathL exhibited hydrolysis preference for Z-Leu-Arg-AMC (k(cat)/K-m = 37.53 mM S-1), which is similar to other insect cathepsin L-like enzymes. rSl-CathL activity inhibition assays were performed using four recombinant sugarcane cystatins. rSl-CathL was strongly inhibited by recombinant cystatin CaneCPI-4 (K-i = 0.196 nM), indicating that this protease is a potential target for pest control. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
FAPESP [2009/13109-5]
Resumo:
Proteases from the midgut gland of the Farfantepenaeus paulensis juveniles were assessed. Enzyme activity was determined using protease substrates and inhibitors. The effect of pH, temperature and calcium on proteolytic activity was assayed. Caseinolytic activity was analysed in substrate-sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Trypsin, chymotrypsin and leucine aminopeptidase activity was detected. Proteolytic activity was strongly inhibited by the specific trypsin inhibitors. Tosyl-phenylalanine chloromethyl ketone inhibited 59.3% of chymotrypsin activity. The greatest trypsin-like activity occurred at pH 8.0 and 45 degrees C. Chymotrypsin-like activity reached maximal values at alkaline pH (7.2-9.0) and 55 degrees C. CaCl(2) did not increase trypsin-like activity, but rather inhibited it at concentrations of 30 (20%), 50 (30%) and 100 mM (50%). The substrate-SDS-PAGE zymogram revealed eight proteinase bands. Two possibly thermal-resistant (85 degrees C, 30 min) chymotrypsin isoforms were found, which were inhibited by phenyl-methyl-sulphonyl-fluoride. Aminopeptidase activity of enzyme extracts (Arg, Leu, Lys, Phe and Val) and the recommended concentrations of these essential amino acids in penaeid shrimp diets were positively correlated (P < 0.05). Beause protein digestion involves the combined action of different enzymes, adequate knowledge of shrimp digestion and enzyme characteristics is required for the assessment of the digestive potential of different feed sources and development of in vitro digestibility protocols.
Resumo:
We evaluated the effects of cigarette smoke (CS) on lung inflammation and remodeling in a model of ovalbumin (OVA)-sensitized and OVA-challenged mice. Male BALB/c mice were divided into 4 groups: non-sensitized and air-exposed (control); non-sensitized and exposed to cigarette smoke (CS), sensitized and air-exposed (OVA) (50 mu g + OVA 1% 3 times/week for 3 weeks) and sensitized and cigarette smoke exposed mice (OVA + CS). IgE levels were not affected by CS exposure. The increases in total bronchoalveolar fluid cells in the OVA group were attenuated by co-exposure to CS, as were the changes in IL-4, IL-5, and eotaxin levels as well as tissue elastance (p < 0.05). In contrast, only the OVA + CS group showed a significant increase in the protein expression of IFN-gamma, VEGF, GM-CSF and collagen fiber content (p < 0.05). In our study, exposure to cigarette smoke in OVA-challenged mice resulted in an attenuation of pulmonary inflammation but led to an increase in pulmonary remodeling and resulted in the dissociation of airway inflammation from lung remodeling. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We evaluated the effects of aerobic exercise (AE) on airway inflammation, exhaled nitric oxide levels (ENO), airway remodeling, and the expression of Thl, Th2 and regulatory cytokines in a guinea pig asthma model. Animals were divided into 4 groups: non-trained and non-sensitized (C), non-sensitized and AE (AE), ovalbumin-sensitized and non-trained (OVA), and OVA-sensitized and AE (OVA + AE). OVA inhalation was performed for 8 weeks, and AE was conducted for 6 weeks beginning in the 3rd week of OVA sensitization. Compared to the other groups, the OVA + AE group had a reduced density of eosinophils and lymphocytes, reduced expression of interleukin (IL)-4 and IL-13 and an increase in epithelium thickness (p < 0.05). AE did not modify airway remodeling or ENO in the sensitized groups (p > 0.05). Neither OVA nor AE resulted in differences in the expression of IL-2, IFN-gamma, IL-10 or IL1-ra. Our results show that AE reduces the expression of Th2 cytokines and allergic airway inflammation and induces epithelium remodeling in sensitized guinea pigs. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.
Resumo:
Aerobic conditioning (AC) performed either during or after sensitization reduces allergic inflammation in mice; however, the effects of AC performed before and during allergic sensitization on airway inflammation are unknown. Mice were divided into Control, AC, OVA, and AC + OVA groups. Mice were trained in a treadmill followed by either ovalbumin (OVA) sensitization or saline administration. Peribronchial inflammation, OVA-specific IgE and IgG1 titers, the expression of Th1 and Th2 cytokines, and airway remodeling were evaluated, as well as the expression of Eotaxin, RANTES, ICAM-1, VCAM-1, TGF-beta and VEGF. Aerobic conditioning performed before and during allergic sensitization displayed an inhibitory effect on the OVA-induced migration of eosinophils and lymphocytes to the airways, a reduction of IgE and IgG1 titers and an inhibition of the expression of Th2 cytokines. The AC + OVA group also demonstrated reduced expression of ICAM-1, VCAM-1, RANTES, TGF-beta and VEGF, as well as decreased airway remodeling (p < 0.05). The effects of AC before and during the sensitization process inhibit allergic airway inflammation and reduce the production of Th2 cytokines and allergen-specific IgE and IgG1.
Resumo:
Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 mu M CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFN gamma through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPAR gamma receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2 alpha, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2 alpha induced by LPS/IFN gamma. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation. Cell Death and Disease (2012) 3, e331; doi:10.1038/cddis.2012.71; published online 28 June 2012
Resumo:
Endothelins (ETs) are involved in several inflammatory events. The present study investigated the efficacy of bosentan, a dual ETA/ETB receptor antagonist, in collagen-induced arthritis (CIA) in mice. CIA was induced in DBA/1J mice. Arthritic mice were treated with bosentan (100 mg/kg) once a day, starting from the day when arthritis was clinically detectable. CIA progression was assessed by measurements of visual clinical score, paw swelling and hypernociception. Histological changes, neutrophil infiltration and pro-inflammatory cytokines were evaluated in the joints. Gene expression in the lymph nodes of arthritic mice was evaluated by microarray technology. PreproET-1 mRNA expression in the lymph nodes of mice and in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time PCR. The differences were evaluated by one-way ANOVA or Student's t test. Oral treatment with bosentan markedly ameliorated the clinical aspects of CIA (visual clinical score, paw swelling and hyperalgesia). Bosentan treatment also reduced joint damage, leukocyte infiltration and pro-inflammatory cytokine levels (IL-1 beta, TNF alpha and IL-17) in the joint tissues. Changes in gene expression in the lymph nodes of arthritic mice returned to the levels of the control mice after bosentan treatment. PreproET mRNA expression increased in PBMCs from rheumatoid arthritis (RA) patients but returned to basal level in PBMCs from patients under anti-TNF therapy. In-vitro treatment of PBMCs with TNF alpha upregulated ET system genes. These findings indicate that ET receptor antagonists, such as bosentan, might be useful in controlling RA. Moreover, it seems that ET mediation of arthritis is triggered by TNF alpha.
Resumo:
Background: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. Objective: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. Methods: The GP were exposed to ovalbumin or saline aerosols (2x/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5x/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. Results: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-gamma, iNOS, 8-iso-PGF2 alpha, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2 alpha, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. Conclusion & clinical relevance: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2 alpha levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.
Resumo:
Thromboangiitis obliterans (TAO) is a segmental inflammatory occlusive disorder that affects the arm and leg arteries of young smokers. The immune system seems to play a critical role in the aetiology of TAO; however, knowledge of the aspects involved in the progression of vascular tissue inflammation and, consequently, the evolution of this disease is still limited. This study was carried out to investigate the cytokine levels of tumour necrosis factor (TNF)-a, interleukin (IL)-1 beta, IL-4, IL-17 and IL-23 in the plasma of TAO patients presenting with acute clinical manifestations. The study included 20 TAO patients (n = 10 women; n = 10 men) aged 3859 years under clinical follow-up, classified into two groups: (i) TAO former smokers (n = 11) and (ii) TAO active smokers (n = 9); the control groups included normal volunteer non-smokers (n = 10, active smokers (n = 10) and former smokers (n = 10). Patients' plasma samples were measured using the sandwich enzyme-linked immunosorbent assay. Statistical analyses were performed using the non-parametric MannWhitney U-test, with parameters significant at P < 0.05. The activities of all cytokines were different in groups of TAO patients when compared with normal controls, and decreased for control smokers. Increased levels of TNF-a, IL-1 beta, IL-4, IL-17 and IL-23 were significant in patients with TAO when compared to the controls (P < 0.005, all parameters). The results presented here indicate an increased production of cytokines in TAO, possibly contributing to the inflammatory response observed in the patients' vascular levels. In addition, the increased levels of IL-17 and IL-23 suggest that the disturbance of TAO is involved with mechanisms of autoimmunity. Thus, the discovery of IL-17 and its association with inflammation and autoimmune pathology has reshaped our viewpoint regarding the pathogenesis of TAO, which was based previously on the T helper type 1 (Th1)Th2 paradigm.