5 resultados para design basis accident
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background Current recommendations for antithrombotic therapy after drug-eluting stent (DES) implantation include prolonged dual antiplatelet therapy (DAPT) with aspirin and clopidogrel >= 12 months. However, the impact of such a regimen for all patients receiving any DES system remains unclear based on scientific evidence available to date. Also, several other shortcomings have been identified with prolonged DAPT, including bleeding complications, compliance, and cost. The second-generation Endeavor zotarolimus-eluting stent (E-ZES) has demonstrated efficacy and safety, despite short duration DAPT (3 months) in the majority of studies. Still, the safety and clinical impact of short-term DAPT with E-ZES in the real world is yet to be determined. Methods The OPTIMIZE trial is a large, prospective, multicenter, randomized (1: 1) non-inferiority clinical evaluation of short-term (3 months) vs long-term (12-months) DAPT in patients undergoing E-ZES implantation in daily clinical practice. Overall, 3,120 patients were enrolled at 33 clinical sites in Brazil. The primary composite endpoint is death (any cause), myocardial infarction, cerebral vascular accident, and major bleeding at 12-month clinical follow-up post-index procedure. Conclusions The OPTIMIZE clinical trial will determine the clinical implications of DAPT duration with the second generation E-ZES in real-world patients undergoing percutaneous coronary intervention. (Am Heart J 2012;164:810-816.e3.)
Resumo:
A ligand-based drug design study was performed to acetaminophen regioisomers as analgesic candidates employing quantum chemical calculations at the DFT/B3LYP level of theory and the 6-31G* basis set. To do so, many molecular descriptors were used such as highest occupied molecular orbital, ionization potential, HO bond dissociation energies, and spin densities, which might be related to quench reactivity of the tyrosyl radical to give N-acetyl-p-benzosemiquinone-imine through an initial electron withdrawing or hydrogen atom abstraction. Based on this in silico work, the most promising molecule, orthobenzamol, was synthesized and tested. The results expected from the theoretical prediction were confirmed in vivo using mouse models of nociception such as writhing, paw licking, and hot plate tests. All biological results suggested an antinociceptive activity mediated by opioid receptors. Furthermore, at 90 and 120 min, this new compound had an effect that was comparable to morphine, the standard drug for this test. Finally, the pharmacophore model is discussed according to the electronic properties derived from quantum chemistry calculations.
Resumo:
CONTEXT AND OBJECTIVE: Epidemiology may help educators to face the challenge of establishing content guidelines for the curricula in medical schools. The aim was to develop learning objectives for a medical curriculum from an epidemiology database. DESIGN AND SETTING: Descriptive study assessing morbidity and mortality data, conducted in a private university in São Paulo. METHODS: An epidemiology database was used, with mortality and morbidity recorded as summaries of deaths and the World Health Organization's Disability-Adjusted Life Year (DALY). The scoring took into consideration probabilities for mortality and morbidity. RESULTS: The scoring presented a classification of health conditions to be used by a curriculum design committee, taking into consideration its highest and lowest quartiles, which corresponded respectively to the highest and lowest impact on morbidity and mortality. Data from three countries were used for international comparison and showed distinct results. The resulting scores indicated topics to be developed through educational taxonomy. CONCLUSION: The frequencies of the health conditions and their statistical treatment made it possible to identify topics that should be fully developed within medical education. The classification also suggested limits between topics that should be developed in depth, including knowledge and development of skills and attitudes, regarding topics that can be concisely presented at the level of knowledge.
Resumo:
Human African trypanosomiasis, also known as sleeping sickness, is a major cause of death in Africa, and for which there are no safe and effective treatments available. The enzyme aldolase from Trypanosoma brucei is an attractive, validated target for drug development. A series of alkyl‑glycolamido and alkyl-monoglycolate derivatives was studied employing a combination of drug design approaches. Three-dimensional quantitative structure-activity relationships (3D QSAR) models were generated using the comparative molecular field analysis (CoMFA). Significant results were obtained for the best QSAR model (r2 = 0.95, non-cross-validated correlation coefficient, and q2 = 0.80, cross-validated correlation coefficient), indicating its predictive ability for untested compounds. The model was then used to predict values of the dependent variables (pKi) of an external test set,the predicted values were in good agreement with the experimental results. The integration of 3D QSAR, molecular docking and molecular dynamics simulations provided further insight into the structural basis for selective inhibition of the target enzyme.
Resumo:
Background: Sleeping sickness is a major cause of death in Africa. Since no secure treatment is available, the development of novel therapeutic agents is urgent. In this context, the enzyme trypanothione reductase (TR) is a prominent molecular target that has been investigated in drug design for sleeping sickness. Results: In this study, comparative molecular field analysis models were generated for a series of Trypanosoma brucei TR inhibitors. Statistically significant results were obtained and the models were applied to predict the activity of external test sets, with good correlation between predicted and experimental results. We have also investigated the structural requirements for the selective inhibition of the parasite's enzyme over the human glutathione reductase. Conclusion: The quantitative structure-activity relationship models provided valuable information regarding the essential molecular requirements for the inhibitory activity upon the target protein, providing important insights into the design of more potent and selective TR inhibitors.