14 resultados para degenerate test set
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Thiosemicarbazones are cruzain inhibitors which have been identified as potential antitrypanosomal agents. In this work, several molecular properties were calculated at the density functional theory (DFT)/B3LYP/6-311G* level for a set of 44 thiosemicarbazones. Unsupervised and supervised pattern recognition techniques (hierarchical cluster analysis, principal component analysis, kth-nearest neighbors, and soft independent modeling by class analogy) were used to obtain structureactivity relationship models, which are able to classify unknown compounds according to their activities. The chemometric analyses performed here revealed that 12 descriptors can be considered responsible for the discrimination between high and low activity compounds. Classification models were validated with an external test set, showing that predictive classifications were achieved with the selected variable set. The results obtained here are in good agreement with previous findings from the literature, suggesting that our models can be useful on further investigations on the molecular determinants for the antichagasic activity. (C) 2012 Wiley Periodicals, Inc.
Resumo:
PPAR delta is a nuclear receptor that, when activated, regulates the metabolism of carbohydrates and lipids and is related to metabolic syndrome and type 2 diabetes. To understand the main interactions between ligands and PPAR delta, we have constructed 2D and 3D QSAR models and compared them with HOMO, LUMO and electrostatic potential maps of the compounds studied, as well as docking results. All QSAR models showed good statistical parameters and prediction outcomes. The QSAR models were used to predict the biological activity of an external test set, and the predicted values are in good agreement with the experimental results. Furthermore, we employed all maps to evaluate the possible interactions between the ligands and PPAR delta. These predictive QSAR models, along with the HOMO, LUMO and MEP maps, can provide insights into the structural and chemical properties that are needed in the design of new PPAR delta ligands that have improved biological activity and can be employed to treat metabolic diseases.
Resumo:
This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.
Resumo:
This work evaluates the efficiency of economic levels of theory for the prediction of (3)J(HH) spin-spin coupling constants, to be used when robust electronic structure methods are prohibitive. To that purpose, DFT methods like mPW1PW91. B3LYP and PBEPBE were used to obtain coupling constants for a test set whose coupling constants are well known. Satisfactory results were obtained in most of cases, with the mPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) leading the set. In a second step. B3LYP was replaced by the semiempirical methods PM6 and RM1 in the geometry optimizations. Coupling constants calculated with these latter structures were at least as good as the ones obtained by pure DFT methods. This is a promising result, because some of the main objectives of computational chemistry - low computational cost and time, allied to high performance and precision - were attained together. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Aldolase has emerged as a promising molecular target for the treatment of human African trypanosomiasis. Over the last years, due to the increasing number of patients infected with Trypanosoma brucei, there is an urgent need for new drugs to treat this neglected disease. In the present study, two-dimensional fragment-based quantitative-structure activity relationship (QSAR) models were generated for a series of inhibitors of aldolase. Through the application of leave-one-out and leave-many-out cross-validation procedures, significant correlation coefficients were obtained (r(2) = 0.98 and q(2) = 0.77) as an indication of the statistical internal and external consistency of the models. The best model was employed to predict pK(i) values for a series of test set compounds, and the predicted values were in good agreement with the experimental results, showing the power of the model for untested compounds. Moreover, structure-based molecular modeling studies were performed to investigate the binding mode of the inhibitors in the active site of the parasitic target enzyme. The structural and QSAR results provided useful molecular information for the design of new aldolase inhibitors within this structural class.
Resumo:
Selective modulation of liver X receptor beta (LXR beta) has been recognized as an important approach to prevent or reverse the atherosclerotic process. In the present work, we have developed robust conformation-independent fragment-based quantitative structure-activity and structure-selectivity relationship models for a series of quinolines and cinnolines as potent modulators of the two LXR sub-types. The generated models were then used to predict the potency of an external test set and the predicted values were in good agreement with the experimental results, indicating the potential of the models for untested compounds. The final 2D molecular recognition patterns obtained were integrated to 3D structure-based molecular modeling studies to provide useful insights into the chemical and structural determinants for increased LXR beta binding affinity and selectivity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Blood-brain barrier (BBB) permeation is an essential property for drugs that act in the central nervous system (CNS) for the treatment of human diseases, such as epilepsy, depression, Alzheimer's disease, Parkinson disease, schizophrenia, among others. In the present work, quantitative structure-property relationship (QSPR) studies were conducted for the development and validation of in silico models for the prediction of BBB permeation. The data set used has substantial chemical diversity and a relatively wide distribution of property values. The generated QSPR models showed good statistical parameters and were successfully employed for the prediction of a test set containing 48 compounds. The predictive models presented herein are useful in the identification, selection and design of new drug candidates having improved pharmacokinetic properties.
Resumo:
Quantitative structure – activity relationships (QSARs) developed to evaluate percentage of inhibition of STa-stimulated (Escherichia coli) cGMP accumulation in T84 cells are calculated by the Monte Carlo method. This endpoint represents a measure of biological activity of a substance against diarrhea. Statistical quality of the developed models is quite good. The approach is tested using three random splits of data into the training and test sets. The statistical characteristics for three splits are the following: (1) n = 20, r2 = 0.7208, q2 = 0.6583, s = 16.9, F = 46 (training set); n = 11, r2 = 0.8986, s = 14.6 (test set); (2) n = 19, r2 = 0.6689, q2 = 0.5683, s = 17.6, F = 34 (training set); n = 12, r2 = 0.8998, s = 12.1 (test set); and (3) n = 20, r2 = 0.7141, q2 = 0.6525, s = 14.7, F = 45 (training set); n = 11, r2 = 0.8858, s = 19.5 (test set). Based on the proposed here models hypothetical compounds which can be useful agents against diarrhea are suggested.
Resumo:
Human African trypanosomiasis, also known as sleeping sickness, is a major cause of death in Africa, and for which there are no safe and effective treatments available. The enzyme aldolase from Trypanosoma brucei is an attractive, validated target for drug development. A series of alkyl‑glycolamido and alkyl-monoglycolate derivatives was studied employing a combination of drug design approaches. Three-dimensional quantitative structure-activity relationships (3D QSAR) models were generated using the comparative molecular field analysis (CoMFA). Significant results were obtained for the best QSAR model (r2 = 0.95, non-cross-validated correlation coefficient, and q2 = 0.80, cross-validated correlation coefficient), indicating its predictive ability for untested compounds. The model was then used to predict values of the dependent variables (pKi) of an external test set,the predicted values were in good agreement with the experimental results. The integration of 3D QSAR, molecular docking and molecular dynamics simulations provided further insight into the structural basis for selective inhibition of the target enzyme.
Resumo:
Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present work was to propose a method for testing the contribution of each level of the factors in a genotypes x environments (GxE) interaction using multi-environment trials analyses by means of an F test. The study evaluated a data set, with twenty genotypes and thirty-four environments, in a block design with four replications. The sum of squares within rows (genotypes) and columns (environments) of the GxE matrix was simulated, generating 10000 experiments to verify the empirical distribution. Results indicate a noncentral chi-square distribution for rows and columns of the GxE interaction matrix, which was also verified by the Kolmogorov-Smirnov test and Q-Q plot. Application of the F test identified the genotypes and environments that contributed the most to the GxE interaction. In this way, geneticists can select good genotypes in their studies.
Resumo:
A long-standing problem when testing from a deterministic finite state machine is to guarantee full fault coverage even if the faults introduce extra states in the implementations. It is well known that such tests should include the sequences in a traversal set which contains all input sequences of length defined by the number of extra states. This paper suggests the SPY method, which helps reduce the length of tests by distributing sequences of the traversal set and reducing test branching. It is also demonstrated that an additional assumption about the implementation under test relaxes the requirement of the complete traversal set. The results of the experimental comparison of the proposed method with an existing method indicate that the resulting reduction can reach 40%. Experimental results suggest that the additional assumption about the implementation can help in further reducing the test suite length. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
This paper addresses the m-machine no-wait flow shop problem where the set-up time of a job is separated from its processing time. The performance measure considered is the total flowtime. A new hybrid metaheuristic Genetic Algorithm-Cluster Search is proposed to solve the scheduling problem. The performance of the proposed method is evaluated and the results are compared with the best method reported in the literature. Experimental tests show superiority of the new method for the test problems set, regarding the solution quality. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the push-out bond strength of fiberglass resin reinforced bonded with five ionomer cements. Also, the interface between cement and dentin was inspected by means of SEM. Fifty human canines were chose after rigorous scrutiny process, endodontically treated and divided randomly into five groups (n = 3) according to cement tested: Group I – Ionoseal (VOCO), Group II – Fugi I (GC), Group III – Fugi II Improved (GC), Group IV – Rely X Luting 2 (3M ESPE), Group V – Ketac Cem (3M ESPE). The post-space was prepared to receive a fiberglass post, which was tried before cementation process. No dentin or post surface pretreatment was carried out. After post bonding, all roots were cross-sectioned to acquire 3 thin-slices (1 mm) from three specific regions of tooth (cervical, medium and apical). A Universal test machine was used to carry out the push-out test with cross-head speed set to 0.5mm/mim. All failed specimens were observed under optical microscope to identify the failure mode. Representative specimens from each group was inspected under SEM. The data were analyzed by Kolmogorov-Smirnov and Levene’s tests and by two-way ANOVA, and Tukey’s port hoc test at a significance level of 5%. It was compared the images obtained for determination of types of failures more occurred in different levels. SEM inspection displayed that all cements filled the space between post and dentin, however, some imperfections such bubles and voids were noticed in all groups in some degree of extension. The push-out bond strength showed that cement Ketac Cem presented significant higher results when compared to the Ionoseal (P = 0.02). There were no statistical significant differences among other cements.