18 resultados para cranial muscles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Characiformes are distributed throughout large portions of the freshwaters of Africa and America. About 90% of the almost 2000 characiform species inhabit the American rivers, with their greatest diversity occurring in the Neotropical region. As in most other groups of fishes, the current knowledge about characiform myology is extremely poor. This study presents the results of a survey of the mandibular, hyopalatine, and opercular musculature of 65 species representing all the 18 traditionally recognized characiform families, including the 14 subfamilies and several genera incertae sedis of the Characidae, the most speciose family of the order. The morphological variation of these muscles across the order is documented in detail and the homologies of the characiform adductor mandibulae divisions are clarified. Accordingly, the mistaken nomenclature previously applied to these divisions in some characiform taxa is herein corrected. Contradicting some previous studies, we found that none of the examined characiforms lacks an A3 section of the adductor mandibulae, but instead some taxa have an A3 continuous with A2. Derived myological features are identified as new putative synapomorphies for: the Characoidei; the clade composed of the Alestidae, Characidae, Gasteropelecidae, Cynodontoidea, and Erythrinoidea; the clade Cynodontoidea plus Erythrinoidea; the clade formed by Ctenoluciidae and Erythrinidae; the Serrasalminae; and the Triportheinae. Additionally, new myological data seems to indicate that the Agoniatinae might be more closely related to cynodontoids and erythrinoids than to other characids. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
This study evaluated the effects of two lipids sources of fish residue (tilapia and salmon) compared with a vegetable oil source (soybean oil) on the fatty acid profiles of male and female lambari. This experiment was developed in a completely randomized experimental design in a 3 x 2 factorial arrangement, totaling 6 treatments resulting from the combination of the three experimental diets for both sexes, with four replications for each treatment. This study involved 120 male (2.58 +/- 0.13 g) and 72 female lambari (4.00 +/- 0.09 g), fed the experimental diets twice a day until apparent satiation for a period of 60 days. Oleic, linoleic, palmitic and stearic fatty acids were found at higher concentrations in all experimental oils and diets, as well in the muscle of male and female lambari. The low amounts of arachidonic, eicosapentaenoic and docosahexaenoic acids in the experimental diets and subsequent greater concentrations in muscle tissue, suggested that lambari are able to desaturate and elongate the chain of fatty acids with 18 carbons. The fish of both sexes that received the diet with soybean oil showed high levels of n-6 fatty acids, especially of C18: 2n-6 and low levels of eicosapentaenoic and docosahexaenoic acids. The diet with salmon residue oil promoted higher levels of fatty acids of the n-3 series and resulted in the best n-3/n-6 ratio in the muscle of male and female lambari. The oils from fish residues can be a substitute for traditional fish oil and its use in the lambari diets does not impair its growth.
Resumo:
Despite the fact that heterochronic processes seem to be an important process determining morphological evolution of the delphinid skull, previous workers have not found allometric scaling as relevant factor in the differentiation within the genus Sotalia. Here we analyzed the skull ontogeny of the estuarine dolphin S. guianensis and investigate differential growth and shape changes of two cranial regions the neurocranium and the face in order to evaluate the relevance of cranial compartmentalization on the ontogeny of this structure. Our results show that, even though both cranial regions stop growing at adulthood, the face has higher initial growth rates than the neurocranium. The rate of shape changes is also different for both regions, with the face showing a initially higher, but rapidly decreasing rate of change, while the neurocranium shows a slow decreasing rate, leading to persistent and localized shape changes throughout adult life, a pattern that could be related to epigenetic regional factors. The pattern of ontogenetic shape change described here is similar to those described for other groups of Delphinidae and also match intra and interspecific variation found within the family, suggesting that mosaic heterochrony could be an important factor in the morphological evolution of this group. (C) 2012 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.
Resumo:
Objective: To test the hypothesis that the extraocular muscles (EOMs) of patients with infantile nystagmus have muscular and innervational adaptations that may have a role in the involuntary oscillations of the eyes. Methods: Specimens of EOMs from 10 patients with infantile nystagmus and postmortem specimens from 10 control subjects were prepared for histologic examination. The following variables were quantified: mean myofiber cross-sectional area, myofiber central nucleation, myelinated nerve density, nerve fiber density, and neuromuscular junction density. Results: In contrast to control EOMs, infantile nystagmus EOMs had significantly more centrally nucleated myofibers, consistent with cycles of degeneration and regeneration. The EOMs of patients with nystagmus also had a greater degree of heterogeneity in myofiber size than did those of controls, with no difference in mean myofiber cross-sectional area. Mean myelinated nerve density, nerve fiber density, and neuromuscular junction density were also significantly decreased in infantile nystagmus EOMs. Conclusions: The EOMs of patients with infantile nystagmus displayed a distinct hypoinnervated phenotype. This represents the first quantification of changes in central nucleation and myofiber size heterogeneity, as well as decreased myelinated nerve, nerve fiber, and neuromuscular junction density. These results suggest that deficits in motor innervation are a potential basis for the primary loss of motor control.
Resumo:
Goncalves DA, Silveira WA, Lira EC, Gra a FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302: E123-E133, 2012. First published September 27, 2011; doi:10.1152/ajpendo.00188.2011.-Although it is well known that administration of the selective beta(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 mu M), a PKA activator. The in vitro addition of triciribine (10 mu M), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Resumo:
Pieri N.C.G., Alicia M. Flamini A.M., Barbeito C.G., Casals J.B., Roque K.B., Favaron P.O., Miglino M.A. & Martins D.S. 2012. [Shape and function of the perineal muscles of viscacha (Lagostomus maximus).] Forma e funcao dos musculos perineais da viscacha (Lagostomus maximus). Pesquisa Veterinaria Brasileira 32(2):183-187. Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de Sao Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP 13635-900, Brazil. E-mail: daniele@usp.br. Among the rodent species studied we can highlight the wide variation in the morphology of the male reproductive system. Thus, considering the ecological importance of rodents, and the large number and geographical representation of this animal, as well as shortages regarding the reproductive anatomy, we developed this study with viscacha, a South American histricomorph rodent. As this species has some very peculiar reproductive features, we described the gross anatomy of the perineal muscles and the role of copulatory behavior. The perineal region of viscacha is composed of five muscles, three of which are arranged in the superficial genitourinary diaphragm, as Musculus ischiocavernosus, M. bulbocavernosus and M. bulbospongiosus, and the muscles that lie at the pelvic diaphragm, M. levator ani and M. retractor penis. Therefore, we emphasize that the study of the pelvic floor in wild animals is of great value, then contribute to a better understanding of the mechanisms related to erection and ejaculation or collaborate with studies on the reproduction of animals.
Resumo:
Background and objective: Malnutrition is prevalent in hospitalized patients and causes systemic damage including effects on the respiratory and immune systems, as well as predisposing to infection and increasing postoperative complications and mortality. This study aimed to assess the impact of malnutrition on the rate of postoperative pulmonary complications, respiratory muscle strength and chest wall expansion in patients undergoing elective upper abdominal surgery. Methods: Seventy-five consecutive candidates for upper abdominal surgery (39 in the malnourished group (MNG) and 36 in the control group (CG)) were enrolled in this prospective controlled cohort study. All patients were evaluated for nutritional status, respiratory muscle strength, chest wall expansion and lung function before surgery. Postoperative pulmonary complications (pneumonia, tracheobronchitis, atelectasis and acute respiratory failure) before discharge from hospital were also evaluated. Results: The MNG showed expiratory muscle weakness (MNG 65 +/- 24 vs CG 82 +/- 22 cm H2O; P < 0.001) and decreased chest wall expansion (P < 0.001), whereas inspiratory muscle strength and lung function were preserved (P > 0.05). The MNG also had a higher incidence of postoperative pulmonary complications compared with the CG (31% and 11%, respectively; P = 0.05). In addition, expiratory muscle weakness was correlated with BMI in the MNG (r = 0.43; P < 0.01). The association between malnutrition and expiratory muscle weakness increased the likelihood of postoperative pulmonary complications after upper abdominal surgery (P = 0.02). Conclusions: These results show that malnutrition is associated with weakness of the expiratory muscles, decreased chest wall expansion and increased incidence of pulmonary complications in patients undergoing elective upper abdominal surgery.
Resumo:
Background: The reduction of the pelvic floor muscles (PFM) strength is a major cause of stress urinary incontinence (SUI). Objective: To compare active and passive forces, and vaginal cavity aperture in continent and stress urinary incontinent women. Method: The study included a total of thirty-two women, sixteen continent women (group 1 - G1) and sixteen women with SUI (group 2 - G2). To evaluate PFM passive and active forces in anteroposterior (sagittal plane) and left-right directions (frontal plane) a stainless steel specular dynamometer was used. Results: The anteroposterior active strength for the continent women (mean +/- standard deviation) (0.3 +/- 0.2 N) was greater compared to the values found in the evaluation of incontinent women (0.1 +/- 0.1 N). The left-right active strength (G1=0.43 +/- 0.1 N; G2=0.40 +/- 0.1 N), the passive force (G1=1.1 +/- 0.2 N; G2=1.1 +/- 0.3 N) and the vaginal cavity aperture (G1=21 +/- 3 mm; G2=24 +/- 4 mm) did not differ between groups 1 and 2. Conclusion: The function evaluation of PFM showed that women with SUI had a lower anteroposterior active strength compared to continent women.
Resumo:
Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive and irreversible degeneration of the muscles. The mdx mouse is the classical animal model for DMD, showing similar molecular and protein defects. The mdx mouse, however, does not show significant muscle weakness, and the diaphragm muscle is significantly more degenerated than skeletal muscles. In this work, magnetic resonance spectroscopy (MRS) was used to study the metabolic profile of quadriceps and diaphragm muscles from mdx and control mice. Using principal components analysis (PCA), the animals were separated into groups according to age and lineages. The classification was compared to histopathological analysis. Among the 24 metabolites identified from the nuclear MR spectra, only 19 were used by the PCA program for classification purposes. These can be important key biomarkers associated with the progression of degeneration in mdx muscles and with natural aging in control mice. Glutamate, glutamine, succinate, isoleucine, acetate, alanine and glycerol were increased in mdx samples as compared to control mice, in contrast to carnosine, taurine, glycine, methionine and creatine that were decreased. These results suggest that MRS associated with pattern recognition analysis can be a reliable tool to assess the degree of pathological and metabolic alterations in the dystrophic tissue, thereby affording the possibility of evaluation of beneficial effects of putative therapies. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Skeletal muscles from old rats fail to completely regenerate following injury. This study investigated whether pharmacological stimulation of beta 2-adrenoceptors in aged muscles following injury could improve their regenerative capacity, focusing on myofiber size recovery. Young and aged rats were treated with a subcutaneous injection of beta 2-adrenergic agonist formoterol (2 mu g/kg/d) up to 10 and 21 days after soleus muscle injury. Formoterol-treated muscles from old rats evaluated at 10 and 21 days postinjury showed reduced inflammation and connective tissue but a similar number of regenerating myofibers of greater caliber when compared with their injured controls. Formoterol minimized the decrease in tetanic force and increased protein synthesis and mammalian target of rapamycin phosphorylation in old muscles at 10 days postinjury. Our results suggest that formoterol improves structural and functional regenerative capacity of regenerating skeletal muscles from aged rats by increasing protein synthesis via mammalian target of rapamycin activation. Furthermore, formoterol may have therapeutic benefits in recovery following muscle damage in senescent individuals.
Resumo:
Background: The objective of this study was to analyze the muscle strength and endurance of the proximal and distal lower-extremity muscles in peripheral artery disease (PAD) patients. Methods: Twenty patients with bilateral PAD with symptoms of intermittent claudication and nine control subjects without PAD were included in the study, comprising 40 and 18 legs, respectively. All subjects performed an isokinetic muscle test to evaluate the muscle strength and endurance of the proximal (knee extension and knee flexion movements) and distal (plantar flexion and dorsiflexion movements) muscle groups in the lower extremity. Results: Compared with the control group, the PAD group presented lower muscle strength in knee flexion (-14.0%), dorsiflexion (-26.0%), and plantar flexion (-21.2%) movements (P < 0.05) but similar strength in knee extension movements (P > 0.05). The PAD patients presented a 13.5% lower knee flexion/extension strength ratio compared with the control subjects (P < 0.05), as well as lower muscle endurance in dorsiflexion (-28.1%) and plantar flexion (-17.0%) movements (P < 0.05). The muscle endurance in knee flexion and knee extension movements was similar between PAD patients and the control subjects (P > 0.05). Conclusion: PAD patients present lower proximal and distal muscle strength and lower distal muscle endurance than control patients. Therefore, interventions to improve muscle strength and endurance should be prescribed for PAD patients.
Resumo:
Decreased activity of the lumbar stabilizer muscles has been identified in individuals with sway-back posture. Disuse can predispose these muscles to atrophy, which is characterized by a reduced cross-sectional area (CSA) and by fat infiltration. The aim of this study was to evaluate the amount of fat infiltration in the lumbar multifidus and lumbar erector spinae muscles as a sign of the muscle atrophy in individuals with sway-back posture, with and without low back pain. Forty-five sedentary individuals between 16 and 40 years old participated in this study. The sample was divided into three groups: symptomatic sway-back (SSBG) (n = 15), asymptomatic sway-back (ASBG) (n = 15), and control (CG) (n = 15). The individuals were first subjected to photographic analysis to classify their postures and were then referred for a magnetic resonance imaging (MRI) examination of the lumbar spine. The total (TCSA) and functional (FCSA) cross-sectional areas of the lumbar erector spinae together with lumbar multifidus and isolated lumbar multifidus muscles were measured from L1 to S1. The amount of fat infiltration was estimated as the difference between the TCSA and the FCSA. Greater fat deposition was observed in the lumbar erector spinae and lumbar multifidus muscles of the individuals in the sway-back posture groups than in the control group. Pain may have contributed to the difference in the amount of fat observed in the groups with the same postural deviation. Similarly, sway-back posture may have contributed to the tissue substitution relative to the control group independently of low back pain. The results of this study indicate that individuals with sway-back posture may be susceptible to morphological changes in their lumbar erector spinae and lumbar multifidus muscles, both due to the presence of pain and as a consequence of their habitual posture.
Resumo:
Objective: To evaluate the influence of myofascial pain on the Pressure Pain Threshold (PPT) of masticatory muscles in women with migraine. Methods: The sample comprised 101 women, ages ranging from 18 to 60 years, with an episodic migraine diagnosis previously confirmed by a neurologist. All patients were evaluated using Research Diagnostic Criteria for Temporomandibular Disorders to determine the presence of myofascial pain and were divided into 2 groups: group I (n=56), comprising women with a migraine, and group II (n=45), comprising women with a migraine and myofascial pain. Two more groups (49 asymptomatic women and 50 women with myofascial pain), matched for sex and race, obtained from a previous study, were added to this study. The PPT values of masseter and temporalis (anterior, middle, and posterior regions) muscles were recorded bilaterally using a pressure algometer. One-way analysis of variance and the Tukey test for pairwise comparisons were used in statistical analysis with a 5% significance level. Results: We found that all groups had significantly lower PPT values compared with asymptomatic women, with lower values seen in group II (women with migraine and myofascial pain). Women with a migraine and myofascial pain showed significantly lower PPT values compared with women with a migraine only, and also when compared with women with myofascial pain only. Discussion: Migraine, especially when accompanied by myofascial pain, reduces the PPT of masticatory muscles, suggesting the importance of masticatory muscle palpation during examination of patients with migraine.