18 resultados para covert recordings
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Because GABA(A) receptors containing alpha 2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha 2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine`s ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha 2-GABA(A) receptors (alpha 2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha 2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha 2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.
Resumo:
To refine methods of electroretinographical (ERG) recording for the analysis of low retinal potentials under scotopic conditions in advanced retinal degenerative diseases. Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) was used in 27 healthy volunteers (mean age 28 +/- A SD 8.5 years) to define the stimulation protocol. The protocol was then applied in clinical routine and 992 recordings were obtained from patients (mean age 40.6 +/- A 18.3 years) over a period of 5 years. A blue stimulus with a flicker frequency of 9 Hz was specified under scotopic conditions to preferentially record rod-driven responses. A range of stimulus strengths (0.0000012-6.32 scot. cd s/mA(2) and 6-14 ms flash duration) was tested for maximal amplitudes and interference between rods and cones. Analysis of results was done by standard Fourier Transformation and assessment of signal-to-noise ratio. Optimized stimulus parameters were found to be a time-integrated luminance of 0.012 scot. cd s/mA(2) using a blue (470 nm) flash of 10 ms duration at a repetition frequency of 9 Hz. Characteristic stimulus strength versus amplitude curves and tests with stimuli of red or green wavelength suggest a predominant rod-system response. The 9 Hz response was found statistically distinguishable from noise in 38% of patients with otherwise non-recordable rod responses according to International Society for Clinical Electrophysiology of Vision standards. Thus, we believe this protocol can be used to record ERG potentials in patients with advanced retinal diseases and in the evaluation of potential treatments for these patients. The ease of implementation in clinical routine and of statistical evaluation providing an observer-independent evaluation may further facilitate its employment.
Resumo:
This study aimed to measure, using fMRI, the effect of diazepam on the haemodynamic response to emotional faces. Twelve healthy male volunteers (mean age = 24.83 +/- 3.16 years), were evaluated in a randomized, balanced-order, double-blind, placebo-controlled crossover design. Diazepam (10 mg) or placebo was given 1 h before the neuroimaging acquisition. In a blocked design covert face emotional task, subjects were presented with neutral (A) and aversive (B) (angry or fearful) faces. Participants were also submitted to an explicit emotional face recognition task, and subjective anxiety was evaluated throughout the procedures. Diazepam attenuated the activation of right amygdala and right orbitofrontal cortex and enhanced the activation of right anterior cingulate cortex (ACC) to fearful faces. In contrast, diazepam enhanced the activation of posterior left insula and attenuated the activation of bilateral ACC to angry faces. In the behavioural task, diazepam impaired the recognition of fear in female faces. Under the action of diazepam, volunteers were less anxious at the end of the experimental session. These results suggest that benzodiazepines can differentially modulate brain activation to aversive stimuli, depending on the stimulus features and indicate a role of amygdala and insula in the anxiolytic action of benzodiazepines.
Resumo:
The saccadic paradigm has been used to investigate specific cortical networks involving visuospatial attention. We examined whether asymmetry in theta and beta band differentiates the role of the hemispheres during the execution of two different prosacadic conditions: a fixed condition, where the stimulus was presented at the same location; and a random condition, where the stimulus was unpredictable. Twelve healthy volunteers (3 male; mean age: 26.25) performed the task while their brain activity pattern was recorded using quantitative electroencephalography. We did not find any significant difference for beta, slow- and fast-alpha frequencies for the pairs of electrodes analyzed. The results for theta band showed a superiority of the left hemisphere in the frontal region when responding to the random condition on the right, which is related to the planning and selection of responses, and also a greater activation of the right hemisphere during the random condition, in the occipital region, related to the identification and recognition of patterns. These results indicate that asymmetries in the premotor area and the occipital cortex differentiate memory- and stimulus-driven tasks. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Central chemoreception is the mechanism by which the brain regulates breathing in response to changes in tissue CO2/H+. Abrainstemregion called the retrotrapezoid nucleus (RTN) contains a population of CO2/H+-sensitive neurons that appears to function as an important chemoreceptor. Evidence also indicates that CO2-evoked ATP release from RTN astrocytes modulates activity of CO2/H+-sensitive neurons; however, the extent to which purinergic signalling contributes to chemoreception by RTN neurons is not clear and the mechanism(s) underlying CO2/H+-evoked ATP release is not fully elucidated. The goals of this study are to determine the extent to which ATP contributes to RTN chemoreception both in vivo and in vitro, andwhether purinergic drive to chemoreceptors relies on extracellularCa(2+) or gap junction hemichannels. We also examine the possible contribution of P2Y1 receptors expressed in theRTNto the purinergic drive to breathe. We showthat purinergic signalling contributes, in part, to the CO2/H+ sensitivity of RTN neurons. In vivo, phrenic nerve recordings of respiratory activity in adult rats show that bilateral injections of pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS, a P2 receptor blocker) decreased the ventilatory response to CO2 by 30%. In vitro, loose-patch recordings from RTN neurons show that P2 receptor blockers decreased responsiveness to both 10% and 15% CO2 also by 30%. In the slice, the contribution of purinergic signalling to RTN chemoreception did not increase with temperature (22-35 degrees C) and was retained in low extracellular Ca2+ medium. Conversely, the gap junction blockers carbenoxolone and cobalt decreased neuronal CO2/H+ sensitivity by an amount similar to P2 receptor antagonists. Inhibition of the P2Y1 receptor in the RTN had no effect on CO2 responsivness in vitro or in vivo; thus, the identity of P2 receptors underlying the purinergic component of RTN chemoreception remains unknown. These results support the possibility that CO2/H+-evoked ATP release is mediated by a mechanism involving gap junction hemichannels.
Resumo:
We have previously reported that noradrenaline (NA) microinjected into the lateral septal area (LSA) caused pressor and bradicardic responses that were mediated by vasopressin release into the circulation through the paraventricular nucleus of hypothalamus (PVN). Although PVN is the final structure involved in the cardiovascular responses caused by NA in the LSA, there is no evidence of direct connections between these areas, suggesting that some structures could be links in this pathway. In the present study, we verified the effect of reversible synaptic inactivation of the medial amygdaloid nucleus (MeA), bed nucleus of stria terminalis (BNST) or diagonal band of Broca (DBB) with Cobalt Chloride (CoCl2) on the cardiovascular response to NA microinjection into the LSA of unanesthetized rats. Male Wistar rats had guide cannulae implanted into the LSA and the MeA, BNST or DBB for drug administration, and a femoral catheter for blood pressure and heart rate recordings. Local microinjection of CoCl2 (1 mm in 100 nL) into the MeA significantly reduced the pressor and bradycardic responses caused by NA microinjection (21 nmol in 200 nL) into the LSA. In contrast, microinjection of CoCl2 into the BNST or DBB did not change the cardiovascular responses to NA into the LSA. The results indicate that synapses within the MeA, but not in BNST or DBB, are involved in the cardiovascular pathway activated by NA microinjection into the LSA.
Resumo:
The caudomedial nidopallium (NCM) is a telencephalic area involved in auditory processing and memorization in songbirds, but the synaptic mechanisms associated with auditory processing in NCM are largely unknown. To identify potential changes in synaptic transmission induced by auditory stimulation in NCM, we used a slice preparation for path-clamp recordings of synaptic currents in the NCM of adult zebra finches (Taenopygia guttata) sacrificed after sound isolation followed by exposure to conspecific song or silence. Although post-synaptic GABAergic and glutamatergic currents in the NCM of control and song-exposed birds did not present any differences regarding their frequency, amplitude and duration after song exposure, we observed a higher probability of generation of bursting glutamatergic currents after blockade of GABAergic transmission in song-exposed birds as compared to controls. Both song-exposed males and females presented an increase in the probability of the expression of bursting glutamatergic currents, however bursting was more commonly seen in males where they appeared even without blocking GABAergic transmission. Our data show that song exposure changes the excitability of the glutamatergic neuronal network, increasing the probability of the generation of bursts of glutamatergic currents, but does not affect basic parameters of glutamatergic and GABAergic synaptic currents.
Resumo:
We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short-and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs.
Resumo:
The association between anisotropic magnetoresistive (AMR) sensor and AC biosusceptometry (ACB) to evaluate gastrointestinal motility is presented. The AMR-ACB system was successfully characterized in a bench-top study, and in vivo results were compared with those obtained by means of simultaneous manometry. Both AMR-ACB and manometry techniques presented high temporal cross correlation between the two periodicals signals (R = 0.9 +/- 0.1; P < 0.05). The contraction frequencies using AMR-ACB were 73.9 +/- 7.6 mHz and using manometry were 73.8 +/- 7.9 mHz during the baseline (r = 98, p < 0.05). The amplitude of contraction using AMR-ACB was 396 +/- 108 mu T.s and using manometry were 540 +/- 198 mmHg.s during the baseline. The amplitudes of signals for AMR-ACB and manometric recordings were similarly increased to 86.4% and 89.3% by neostigmine, and also decreased to 27.2% and 21.4% by hyoscine butylbromide in all animals, respectively. The AMR-ACB array is nonexpensive, portable, and has high-spatiotemporal resolution to provide helpful information about gastrointestinal tract.
Resumo:
Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatosensory cortices. For this, 21 healthy volunteers underwent functional magnetic resonance imaging (fMRI). In addition we explored the abilities of the different covert movement modes in activating the sensorimotor system in a pilot study of 5 stroke patients suffering from chronic severe hemiparesis. Results demonstrated that while all covert movement modes activated sensorimotor areas, there were profound differences between modes and between healthy volunteers and patients. In healthy volunteers, the pattern of neural activation in overt execution was best resembled by passive movement, followed by motor imagery, and lastly by movement observation. In patients, attempted overt execution was best resembled by motor imagery, followed by passive movement and lastly by movement observation. Our results indicate that for severely hemiparetic stroke patients motor imagery may be the preferred way to activate the sensorimotor system without overt behavior. In addition, the clear differences between the covert movement modes point to the need for within-subject comparisons. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Increasing age is associated with a reduction in overall heart rate variability as well as changes in complexity of physiologic dynamics. The aim of this study was to verify if the alterations in autonomic modulation of heart rate caused by the aging process could be detected by Shannon entropy (SE), conditional entropy (CE) and symbolic analysis (SA). Complexity analysis was carried out in 44 healthy subjects divided into two groups: old (n = 23, 63 +/- A 3 years) and young group (n = 21, 23 +/- A 2). It was analyzed SE, CE [complexity index (CI) and normalized CI (NCI)] and SA (0V, 1V, 2LV and 2ULV patterns) during short heart period series (200 cardiac beats) derived from ECG recordings during 15 min of rest in a supine position. The sequences characterized by three heart periods with no significant variations (0V), and that with two significant unlike variations (2ULV) reflect changes in sympathetic and vagal modulation, respectively. The unpaired t test (or Mann-Whitney rank sum test when appropriate) was used in the statistical analysis. In the aging process, the distributions of patterns (SE) remain similar to young subjects. However, the regularity is significantly different; the patterns are more repetitive in the old group (a decrease of CI and NCI). The amounts of pattern types are different: 0V is increased and 2LV and 2ULV are reduced in the old group. These differences indicate marked change of autonomic regulation. The CE and SA are feasible techniques to detect alteration in autonomic control of heart rate in the old group.
Resumo:
Objectives: To report the results of cochlear implantation via the middle fossa approach in 4 patients, discuss the complications, and present a detailed description of the programming specifications in these cases. Study Design: Retrospective case review. Setting: Tertiary-care referral center with a well-established cochlear implant program. Patients: Four patients with bilateral canal wall down mastoid cavities who underwent the middle fossa approach for cochlear implantation. Interventions: Cochlear implantation and subsequent rehabilitation. A middle fossa approach with cochleostomy was successfully performed on the most superficial part of the apical turn in 4 patients. A Nucleus 24 cochlear implant system was used in 3 patients and a MED-EL Sonata Medium device in 1 patient. The single electrode array was inserted through a cochleostomy from the cochlear apex and occupied the apical, middle, and basal turns. Telemetry and intraoperative impedance recordings were performed at the end of surgery. A CT scan of the temporal bones was performed to document electrode insertion for all of the patients. Main Outcome Measures: Complications, hearing thresholds, and speech perception outcomes were evaluated. Results: Neural response telemetry showed present responses in all but 1 patient, who demonstrated facial nerve stimulation during the test. Open-set speech perception varied from 30% to 100%, despite the frequency allocation order of the MAP. Conclusion: Cochlear implantation via the middle cranial fossa is a safe approach, although it is a challenging procedure, even for experienced surgeons.
Resumo:
Purpose. To use a randomized design to evaluate the effectiveness of voice training programs for telemarketers via multidimensional analysis. Methods. Forty-eight telemarketers were randomly assigned to two groups: voice training group (n = 14) who underwent training over an 8-week period and a nontraining control group (n = 34). Before and after training, recordings of the sustained vowel /epsilon/ and connected were collected for acoustic and perceptual analyses. Results. Based on pre- and posttraining comparisons, the voice training group presented with a significant reduction in percent jitter (P = 0.044). No other significant differences were observed, and inter-rater reliability varied from poor to fair. Conclusions. These findings suggest that voice training improved a single acoustic dimension, but do not change perceptual dimension of telemarketers' voices.
Resumo:
Background: The sural nerve has been widely investigated in experimental models of neuropathies but information about its involvement in hypertension was not yet explored. The aim of the present study was to compare the morphological and morphometric aspects of different segments of the sural nerve in male and female spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Rats aged 20 weeks (N = 6 in each group) were investigated. After arterial pressure and heart rate recordings in anesthetized animals, right and left sural nerves were removed and prepared for epoxy resin embedding and light microscopy. Morphometric analysis was performed with the aid of computer software, and took into consideration the fascicle area and diameter, as well as myelinated fiber number, density, area and diameter. Results: Significant differences were observed for the myelinated fiber number and density, comparing different genders of WKY and SHR. Also, significant differences for the morphological (thickening of the endoneural blood vessel walls and lumen reduction) and morphometric (myelinated fibers diameter and G ratio) parameters of myelinated fibers were identified. Morphological exam of the myelinated fibers suggested the presence of a neuropathy due to hypertension in both SHR genders. Conclusions: These results indicate that hypertension altered important morphometric parameters related to nerve conduction of sural nerve in hypertensive animals. Moreover the comparison between males and females of WKY and SHR allows the conclusion that the morphological and morphometric parameters of sural nerve are not gender related. The morphometric approach confirmed the presence of neuropathy, mainly associated to the small myelinated fibers. In conclusion, the present study collected evidences that the high blood pressure in SHR is affecting the sural nerve myelinated fibers.
Resumo:
Among the ongoing attempts to enhance cognitive performance, an emergent and yet underrepresented venue is brought by hemoencefalographic neurofeedback (HEG). This paper presents three related advances in HEG neurofeedback for cognitive enhancement: a) a new HEG protocol for cognitive enhancement, as well as b) the results of independent measures of biological efficacy (EEG brain maps) extracted in three phases, during a one year follow up case study; c) the results of the first controlled clinical trial of HEG, designed to assess the efficacy of the technique for cognitive enhancement of an adult and neurologically intact population. The new protocol was developed in the environment of a software that organizes digital signal algorithms in a flowchart format. Brain maps were produced through 10 brain recordings. The clinical trial used a working memory test as its independent measure of achievement. The main conclusion of this study is that the technique appears to be clinically promising. Approaches to cognitive performance from a metabolic viewpoint should be explored further. However, it is particularly important to note that, to our knowledge, this is the world's first controlled clinical study on the matter and it is still early for an ultimate evaluation of the technique.