11 resultados para controlled ventilation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: The benefits of higher positive end expiratory pressure (PEEP) in patients with acute respiratory distress syndrome (ARDS) have been modest, but few studies have fully tested the "open-lung hypothesis". This hypothesis states that most of the collapsed lung tissue observed in ARDS can be reversed at an acceptable clinical cost, potentially resulting in better lung protection, but requiring more intensive maneuvers. The short-/middle-term efficacy of a maximum recruitment strategy (MRS) was recently described in a small physiological study. The present study extends those results, describing a case-series of non-selected patients with early, severe ARDS submitted to MRS and followed until hospital discharge or death. Methods: MRS guided by thoracic computed tomography (CT) included two parts: a recruitment phase to calculate opening pressures (incremental steps under pressure-controlled ventilation up to maximum inspiratory pressures of 60 cmH(2)O, at constant driving-pressures of 15 cmH(2)O); and a PEEP titration phase (decremental PEEP steps from 25 to 10 cmH2O) used to estimate the minimum PEEP to keep lungs open. During all steps, we calculated the size of the non-aerated (-100 to +100 HU) compartment and the recruitability of the lungs (the percent mass of collapsed tissue re-aerated from baseline to maximum PEEP). Results: A total of 51 severe ARDS patients, with a mean age of 50.7 years (84% primary ARDS) was studied. The opening plateau-pressure was 59.6 (+/- 5.9 cmH(2)O), and the mean PEEP titrated after MRS was 24.6 (+/- 2.9 cmH(2)O). Mean PaO2/FiO(2) ratio increased from 125 (+/- 43) to 300 (+/- 103; P < 0.0001) after MRS and was sustained above 300 throughout seven days. Non-aerated parenchyma decreased significantly from 53.6% (interquartile range (IQR): 42.5 to 62.4) to 12.7% (IQR: 4.9 to 24.2) (P < 0.0001) after MRS. The potentially recruitable lung was estimated at 45% (IQR: 25 to 53). We did not observe major barotrauma or significant clinical complications associated with the maneuver. Conclusions: MRS could efficiently reverse hypoxemia and most of the collapsed lung tissue during the course of ARDS, compatible with a high lung recruitability in non-selected patients with early, severe ARDS. This strategy should be tested in a prospective randomized clinical trial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Introduction Biphasic positive airway pressure (BIVENT) is a partial support mode that employs pressure-controlled, time-cycled ventilation set at two levels of continuous positive airway pressure with unrestricted spontaneous breathing. BIVENT can modulate inspiratory effort by modifying the frequency of controlled breaths. Nevertheless, the optimal amount of inspiratory effort to improve respiratory function while minimizing ventilator-associated lung injury during partial ventilatory assistance has not been determined. Furthermore, it is unclear whether the effects of partial ventilatory support depend on acute lung injury (ALI) etiology. This study aimed to investigate the impact of spontaneous and time-cycled control breaths during BIVENT on the lung and diaphragm in experimental pulmonary (p) and extrapulmonary (exp) ALI. Methods This was a prospective, randomized, controlled experimental study of 60 adult male Wistar rats. Mild ALI was induced by Escherichia coli lipopolysaccharide either intratracheally (ALIp) or intraperitoneally (ALIexp). After 24 hours, animals were anesthetized and further randomized as follows: (1) pressure-controlled ventilation (PCV) with tidal volume (Vt) = 6 ml/kg, respiratory rate = 100 breaths/min, PEEP = 5 cmH2O, and inspiratory-to-expiratory ratio (I:E) = 1:2; or (2) BIVENT with three spontaneous and time-cycled control breath modes (100, 75, and 50 breaths/min). BIVENT was set with two levels of CPAP (Phigh = 10 cmH2O and Plow = 5 cmH2O). Inspiratory time was kept constant (Thigh = 0.3 s). Results BIVENT was associated with reduced markers of inflammation, apoptosis, fibrogenesis, and epithelial and endothelial cell damage in lung tissue in both ALI models when compared to PCV. The inspiratory effort during spontaneous breaths increased during BIVENT-50 in both ALI models. In ALIp, alveolar collapse was higher in BIVENT-100 than PCV, but decreased during BIVENT-50, and diaphragmatic injury was lower during BIVENT-50 compared to PCV and BIVENT-100. In ALIexp, alveolar collapse during BIVENT-100 and BIVENT-75 was comparable to PCV, while decreasing with BIVENT-50, and diaphragmatic injury increased during BIVENT-50. Conclusions In mild ALI, BIVENT had a lower biological impact on lung tissue compared to PCV. In contrast, the response of atelectasis and diaphragmatic injury to BIVENT differed according to the rate of spontaneous/controlled breaths and ALI etiology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Patients undergoing mechanical ventilation (MV) are frequently administered prolonged and/or high doses of opioids which when removed can cause a withdrawal syndrome and difficulty in weaning from MV. We tested the hypothesis that the introduction of enteral methadone during weaning from sedation and analgesia in critically ill adult patients on MV would decrease the weaning time from MV. Methods: A double-blind randomized controlled trial was conducted in the adult intensive care units (ICUs) of four general hospitals in Brazil. The 75 patients, who met the criteria for weaning from MV and had been using fentanyl for more than five consecutive days, were randomized to the methadone (MG) or control group (CG). Within the first 24 hours after study enrollment, both groups received 80% of the original dose of fentanyl, the MG received enteral methadone and the CG received an enteral placebo. After the first 24 hours, the MG received an intravenous (IV) saline solution (placebo), while the CG received IV fentanyl. For both groups, the IV solution was reduced by 20% every 24 hours. The groups were compared by evaluating the MV weaning time and the duration of MV, as well as the ICU stay and the hospital stay. Results: Of the 75 patients randomized, seven were excluded and 68 were analyzed: 37 from the MG and 31 from the CG. There was a higher probability of early extubation in the MG, but the difference was not significant (hazard ratio: 1.52 (95% confidence interval (CI) 0.87 to 2.64; P = 0.11). The probability of successful weaning by the fifth day was significantly higher in the MG (hazard ratio: 2.64 (95% CI: 1.22 to 5.69; P < 0.02). Among the 54 patients who were successfully weaned (29 from the MG and 25 from the CG), the MV weaning time was significantly lower in the MG (hazard ratio: 2.06; 95% CI 1.17 to 3.63; P < 0.004). Conclusions: The introduction of enteral methadone during weaning from sedation and analgesia in mechanically ventilated patients resulted in a decrease in the weaning time from MV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Introduction Noninvasive ventilation (NIV), as a weaning-facilitating strategy in predominantly chronic obstructive pulmonary disease (COPD) mechanically ventilated patients, is associated with reduced ventilator-associated pneumonia, total duration of mechanical ventilation, length of intensive care unit (ICU) and hospital stay, and mortality. However, this benefit after planned extubation in patients with acute respiratory failure of various etiologies remains to be elucidated. The aim of this study was to determine the efficacy of NIV applied immediately after planned extubation in contrast to oxygen mask (OM) in patients with acute respiratory failure (ARF). Methods A randomized, prospective, controlled, unblinded clinical study in a single center of a 24-bed adult general ICU in a university hospital was carried out in a 12-month period. Included patients met extubation criteria with at least 72 hours of mechanical ventilation due to acute respiratory failure, after following the ICU weaning protocol. Patients were randomized immediately before elective extubation, being randomly allocated to one of the study groups: NIV or OM. We compared both groups regarding gas exchange 15 minutes, 2 hours, and 24 hours after extubation, reintubation rate after 48 hours, duration of mechanical ventilation, ICU length of stay, and hospital mortality. Results Forty patients were randomized to receive NIV (20 patients) or OM (20 patients) after the following extubation criteria were met: pressure support (PSV) of 7 cm H2O, positive end-expiratory pressure (PEEP) of 5 cm H2O, oxygen inspiratory fraction (FiO2) ≤ 40%, arterial oxygen saturation (SaO2) ≥ 90%, and ratio of respiratory rate and tidal volume in liters (f/TV) < 105. Comparing the 20 patients (NIV) with the 18 patients (OM) that finished the study 48 hours after extubation, the rate of reintubation in NIV group was 5% and 39% in OM group (P = 0.016). Relative risk for reintubation was 0.13 (CI = 0.017 to 0.946). Absolute risk reduction for reintubation showed a decrease of 33.9%, and analysis of the number needed to treat was three. No difference was found in the length of ICU stay (P = 0.681). Hospital mortality was zero in NIV group and 22.2% in OM group (P = 0.041). Conclusions In this study population, NIV prevented 48 hours reintubation if applied immediately after elective extubation in patients with more than 3 days of ARF when compared with the OM group. Trial Registration number ISRCTN: 41524441.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Conventional cardiac rehabilitation program consist of 15 min of warm-up, 30 min of aerobic exercise and followed by 15 min calisthenics exercise. The Pilates method has been increasingly applied for its therapeutic benefits, however little scientific evidence supports or rebukes its use as a treatment in patients with heart failure (HF). Purpose: Investigate the effects of Pilates on exercise capacity variables in HF. Methods: Sixteen pts with HF, left ventricular ejection fraction 27 +/- 14%, NYHA class III were randomly assigned to conventional cardiac rehabilitation program (n = 8) or mat Pilates training (n = 8) for 16 weeks of 30 min of aerobic exercise followed by 20 min of the specific program. Results: At 16 weeks, pts in the mat Pilates group and conventional group showed significantly increase on exercise time 11.9 +/- 2.5 to 17.8 +/- 4 and 11.7 +/- 3.9 to 14.2 +/- 4 min, respectively. However, only the Pilates group increased significantly the ventilation (from 56 +/- 20 to 69 +/- 17 L/min, P= 0.02), peak VO2 (from 20.9 +/- 6 to 24.8 +/- 6 mL/kg/min, P= 0.01), and O-2 pulse (from 11.9 +/- 2 to 13.8 +/- 3 mL/bpm, P= 0.003). The Pilates group showed significantly increase in peak VO2 when compared with conventional group (24.8 +/- 6 vs. 18.3 +/- 4, P= 0.02). Conclusions: The result suggests that the Pilates method may be a beneficial adjunctive treatment that enhances functional capacity in patients with HF who are already receiving standard medical therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: A number of complications exist with invasive mechanical ventilation and with the use of and withdrawal from prolonged ventilator support. The use of protocols that enable the systematic identification of patients eligible for an interruption in mechanical ventilation can significantly reduce the number of complications. This study describes the application of a weaning protocol and its results. METHODS: Patients who required invasive mechanical ventilation for more than 24 hours were included and assessed daily to identify individuals who were ready to begin the weaning process. RESULTS: We studied 252 patients with a median mechanical ventilation time of 3.7 days (interquartile range of 1 to 23 days), a rapid shallow breathing index value of 48 (median), a maximum inspiratory pressure of 40 cmH2O, and a maximum expiratory pressure of 40 cm H2O (median). Of these 252 patients, 32 (12.7%) had to be reintubated, which represented weaning failure. Noninvasive ventilation was used postextubation in 170 (73%) patients, and 15% of these patients were reintubated, which also represented weaning failure. The mortality rate of the 252 patients studied was 8.73% (22), and there was no significant difference in the age, gender, mechanical ventilation time, and maximum inspiratory pressure between the survivors and nonsurvivors. CONCLUSIONS: The use of a specific weaning protocol resulted in a lower mechanical ventilation time and an acceptable reintubation rate. This protocol can be used as a comparative index in hospitals to improve the weaning system, its monitoring and the informative reporting of patient outcomes and may represent a future tool and source of quality markers for patient care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Automated weaning modes are available in some mechanical ventilators, but no studies compared them hitherto. We compared the performance of 3 automated modes under standard and challenging situations. Methods: We used a lung simulator to compare 3 automated modes, adaptive support ventilation (ASV), mandatory rate ventilation (MRV), and Smartcare, in 6 situations, weaning success, weaning failure, weaning success with extreme anxiety, weaning success with Cheyne-Stokes, weaning success with irregular breathing, and weaning failure with ineffective efforts. Results: The 3 modes correctly recognized the situations of weaning success and failure, even when anxiety or irregular breathing were present but incorrectly recognized weaning success with Cheyne-Stokes. MRV incorrectly recognized weaning failure with ineffective efforts. Time to pressure support (PS) stabilization was shorter for ASV (1-2 minutes for all situations) and MRV (1-7 minutes) than for Smartcare (8-78 minutes). ASV had higher rates of PS oscillations per 5 minutes (4-15), compared with Smartcare (0-1) and MRV (0-12), except when extreme anxiety was present. Conclusions: Smartcare, ASV, and MRV were equally able to recognize weaning success and failure, despite the presence of anxiety or irregular breathing but performed incorrectly in the presence of Cheyne-Stokes. PS behavior over the time differs among modes, with ASV showing larger and more frequent PS oscillations over the time. Clinical studies are needed to confirm our results. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. Objective To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. Data Sources MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Study Selection Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Data Extraction Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Data Synthesis Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I-2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I-2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I-2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I-2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I-2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I-2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I-2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Conclusions Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation. JAMA. 2012;308(16):1651-1659 www.jama.com

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Introduction Several studies have shown that maximizing stroke volume (or increasing it until a plateau is reached) by volume loading during high-risk surgery may improve post-operative outcome. This goal could be achieved simply by minimizing the variation in arterial pulse pressure (ΔPP) induced by mechanical ventilation. We tested this hypothesis in a prospective, randomized, single-centre study. The primary endpoint was the length of postoperative stay in hospital. Methods Thirty-three patients undergoing high-risk surgery were randomized either to a control group (group C, n = 16) or to an intervention group (group I, n = 17). In group I, ΔPP was continuously monitored during surgery by a multiparameter bedside monitor and minimized to 10% or less by volume loading. Results Both groups were comparable in terms of demographic data, American Society of Anesthesiology score, type, and duration of surgery. During surgery, group I received more fluid than group C (4,618 ± 1,557 versus 1,694 ± 705 ml (mean ± SD), P < 0.0001), and ΔPP decreased from 22 ± 75 to 9 ± 1% (P < 0.05) in group I. The median duration of postoperative stay in hospital (7 versus 17 days, P < 0.01) was lower in group I than in group C. The number of postoperative complications per patient (1.4 ± 2.1 versus 3.9 ± 2.8, P < 0.05), as well as the median duration of mechanical ventilation (1 versus 5 days, P < 0.05) and stay in the intensive care unit (3 versus 9 days, P < 0.01) was also lower in group I. Conclusion Monitoring and minimizing ΔPP by volume loading during high-risk surgery improves postoperative outcome and decreases the length of stay in hospital. Trial registration NCT00479011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: identify and analyze in the literature the evidence of randomized controlled trials on care related to the suctioning of endotracheal secretions in intubated, critically ill adult patients undergoing mechanical ventilation. METHOD: the search was conducted in the PubMed, EMBASE, CENTRAL, CINAHL and LILACS databases. From the 631 citations found, 17 studies were selected. RESULTS: Evidence was identified for six categories of intervention related to endotracheal suctioning, which were analyzed according to outcomes related to hemodynamic and blood gas alterations, microbial colonization, nosocomial infection, and others. CONCLUSIONS: although the evidence obtained is relevant to the practice of endotracheal aspiration, the risks of bias found in the studies selected compromise the evidence's reliability.