20 resultados para coefficienti binomiali combinatoria differenze finite
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives. The C-Factor has been used widely to rationalize the changes in shrinkage stress occurring at the tooth/resin-composite interfaces. Experimentally, such stresses have been measured in a uniaxial direction between opposed parallel walls. The situation of adjoining cavity walls has been neglected. The aim was to investigate the hypothesis that: within stylized model rectangular cavities of constant volume and wall thickness, the interfacial shrinkage-stress at the adjoining cavity walls increases steadily as the C-Factor increases. Methods. Eight 3D-FEM restored Class I 'rectangular cavity' models were created by MSC.PATRAN/MSC.Marc, r2-2005 and subjected to 1% of shrinkage, while maintaining constant both the volume (20 mm(3)) and the wall thickness (2 mm), but varying the C-Factor (1.9-13.5). An adhesive contact between the composite and the teeth was incorporated. Polymerization shrinkage was simulated by analogy with thermal contraction. Principal stresses and strains were calculated. Peak values of maximum principal (MP) and maximum shear (MS) stresses from the different walls were displayed graphically as a function of C-Factor. The stress-peak association with C-Factor was evaluated by the Pearson correlation between the stress peak and the C-Factor. Results. The hypothesis was rejected: there was no clear increase of stress-peaks with C-Factor. The stress-peaks particularly expressed as MP and MS varied only slightly with increasing C-Factor. Lower stress-peaks were present at the pulpal floor in comparison to the stress at the axial walls. In general, MP and MS were similar when the axial wall dimensions were similar. The Pearson coefficient only expressed associations for the maximum principal stress at the ZX wall and the Z axis. Significance. Increase of the C-Factor did not lead to increase of the calculated stress-peaks in model rectangular Class I cavity walls. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. (C) 2011 Elsevier By. All rights reserved.
Resumo:
This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.
Resumo:
We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates in the limit U -> infinity and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole continuum in the limit U -> 0. Power-law singularities along boundary lines of the spectrum are described by effective impurity models that are explicitly invariant under spin and eta-spin SU(2) rotations. The Mott-Hubbard metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0. The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove singularity that persists as a consequence of integrability.
Resumo:
It is shown that the correct mathematical implementation of symmetry in the geometric formulation of classical field theory leads naturally beyond the concept of Lie groups and their actions on manifolds, out into the realm of Lie group bundles and, more generally, of Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries, which lie at the heart of gauge theories, but is already true even for global symmetries when one allows for fields that are sections of bundles with (possibly) non-trivial topology or, even when these are topologically trivial, in the absence of a preferred trivialization. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We study the effects of spin accumulation (inside reservoirs) on electronic transport with tunneling and reflections at the gates of a quantum dot. Within the stub model, the calculations focus on the current-current correlation function for the flux of electrons injected into the quantum dot. The linear response theory used allows us to obtain the noise power in the regime of thermal crossover as a function of parameters that reveal the spin polarization at the reservoirs. The calculation is performed employing diagrammatic integration within the universal groups (ensembles of Dyson) for a nonideal, nonequilibrium chaotic quantum dot. We show that changes in the spin distribution determine significant alterations in noise behavior at values of the tunneling rates close to zero, in the regime of strong reflection at the gates.
Resumo:
Using the density matrix renormalization group, we calculated the finite-size corrections of the entanglement alpha-Renyi entropy of a single interval for several critical quantum chains. We considered models with U(1) symmetry such as the spin-1/2 XXZ and spin-1 Fateev-Zamolodchikov models, as well as models with discrete symmetries such as the Ising, the Blume-Capel, and the three-state Potts models. These corrections contain physically relevant information. Their amplitudes, which depend on the value of a, are related to the dimensions of operators in the conformal field theory governing the long-distance correlations of the critical quantum chains. The obtained results together with earlier exact and numerical ones allow us to formulate some general conjectures about the operator responsible for the leading finite-size correction of the alpha-Renyi entropies. We conjecture that the exponent of the leading finite-size correction of the alpha-Renyi entropies is p(alpha) = 2X(epsilon)/alpha for alpha > 1 and p(1) = nu, where X-epsilon denotes the dimensions of the energy operator of the model and nu = 2 for all the models.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
There has been a significant increase in the number of facial fractures stemming from sport activities in recent years, with the nasal bone one of the most affected structures. Researchers recommend the use of a nose protector, but there is no standardization regarding the material employed. Clinical experience has demonstrated that a combination of a flexible and rigid layer of ethylene vinyl acetate (EVA) offers both comfort and safety to practitioners of sports. The aim of the present study was the investigation into the stresses generated by the impact of a rigid body on the nasal bone on models with and without an EVA protector. For such, finite element analysis was employed. A craniofacial model was constructed from images obtained through computed tomography. The nose protector was modeled with two layers of EVA (1 mm of rigid EVA over 2 mm of flexible EVA), following the geometry of the soft tissue. Finite element analysis was performed using the LS Dyna program. The bone and rigid EVA were represented as elastic linear material, whereas the soft tissues and flexible EVA were represented as hyperelastic material. The impact from a rigid sphere on the frontal region of the face was simulated with a constant velocity of 20 m s-1 for 9.1 mu s. The model without the protector served as the control. The distribution of maximal stress of the facial bones was recorded. The maximal stress on the nasal bone surpassed the breaking limit of 0.130.34 MPa on the model without a protector, while remaining below this limit on the model with the protector. Thus, the nose protector made from both flexible and rigid EVA proved effective at protecting the nasal bones under high-impact conditions.
Resumo:
Statement of problem. The retention of an Aramany Class IV removable partial dental prosthesis can be compromised by a lack of support. The biomechanics of this obturator prosthesis result in an unusual stress distribution on the residual maxillary bone. Purpose. This study evaluated the biomechanics of an Aramany Class IV obturator prosthesis with finite element analysis and a digital 3-dimensional (3-D) model developed from a computed tomography scan; bone stress was evaluated according to the load placed on the prosthesis. Material and methods. A 3-D model of an Aramany Class IV maxillary resection and prosthesis was constructed. This model was used to develop a finite element mesh. A 120 N load was applied to the occlusal and incisal platforms corresponding to the prosthetic teeth. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis were expressed in MPa. Results. Under posterior load, tensile and compressive stresses were observed; the tensile stress was greater than the compressive stress, regardless of the bone region, and the greatest compressive stress was observed on the anterior palate near the midline. Under an anterior load, tensile stress was observed in all of the evaluated bone regions; the tensile stress was greater than the compressive stress, regardless of the bone region. Conclusions. The Aramany Class IV obturator prosthesis tended to rotate toward the surgical resection when subjected to posterior or anterior loads. The amount of tensile and compressive stress caused by the Aramany Class IV obturator prosthesis did not exceed the physiological limits of the maxillary bone tissue. (J Prosthet Dent 2012;107:336-342)
Resumo:
The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.
Resumo:
We consider a recently proposed finite-element space that consists of piecewise affine functions with discontinuities across a smooth given interface Γ (a curve in two dimensions, a surface in three dimensions). Contrary to existing extended finite element methodologies, the space is a variant of the standard conforming Formula space that can be implemented element by element. Further, it neither introduces new unknowns nor deteriorates the sparsity structure. It is proved that, for u arbitrary in Formula, the interpolant Formula defined by this new space satisfies Graphic where h is the mesh size, Formula is the domain, Formula, Formula, Formula and standard notation has been adopted for the function spaces. This result proves the good approximation properties of the finite-element space as compared to any space consisting of functions that are continuous across Γ, which would yield an error in the Formula-norm of order Graphic. These properties make this space especially attractive for approximating the pressure in problems with surface tension or other immersed interfaces that lead to discontinuities in the pressure field. Furthermore, the result still holds for interfaces that end within the domain, as happens for example in cracked domains.
Resumo:
The stability of two recently developed pressure spaces has been assessed numerically: The space proposed by Ausas et al. [R.F. Ausas, F.S. Sousa, G.C. Buscaglia, An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1019-1031], which is capable of representing discontinuous pressures, and the space proposed by Coppola-Owen and Codina [A.H. Coppola-Owen, R. Codina, Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49 (2005) 1287-1304], which can represent discontinuities in pressure gradients. We assess the stability of these spaces by numerically computing the inf-sup constants of several meshes. The inf-sup constant results as the solution of a generalized eigenvalue problems. Both spaces are in this way confirmed to be stable in their original form. An application of the same numerical assessment tool to the stabilized equal-order P-1/P-1 formulation is then reported. An interesting finding is that the stabilization coefficient can be safely set to zero in an arbitrary band of elements without compromising the formulation's stability. An analogous result is also reported for the mini-element P-1(+)/P-1 when the velocity bubbles are removed in an arbitrary band of elements. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the paper, a complete description of the delta-derivations and the delta-superderivations of semisimple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic p not equal 2 is given. In particular, new examples of nontrivial (1/2)-derivations and odd (1/2)-superderivations are given that are not operators of right multiplication by an element of the superalgebra.
Resumo:
We show, in the imaginary time formalism, that the temperature dependent parts of all the retarded (advanced) amplitudes vanish in the Schwinger model. We trace this behavior to the CPT invariance of the theory and give a physical interpretation of this result in terms of forward scattering amplitudes of on-shell thermal particles.