2 resultados para ampos magnéticos

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the magnetic and transport properties of nanoscaled Fe3O4 films obtained from Chemical Vapor Deposition (CVD) technique using [(FeFe2III)-Fe-II(OBut)(8)] and [Fe-2(III)(OBut)(6)] precursors. Samples were deposited on different substrates (i.e., MgO (001), MgAl2O4 (001) and Al2O3 (0001)) with thicknesses varying from 50 to 350 nm. Atomic Force Microscopy analysis indicated a granular nature of the samples, irrespective of the synthesis conditions (precursor and deposition temperature, T-pre) and substrate. Despite the similar morphology of the films, magnetic and transport properties were found to depend on the precursor used for deposition. Using [(FeFe2III)-Fe-II(OBut)(8)] as precursor resulted in lower resistivity, higher M-S and a sharper magnetization decrease at the Verwey transition (T-V). The temperature dependence of resistivity was found to depend on the precursor and T-pre. We found that the transport is dominated by the density of antiferromagnetic antiphase boundaries (AF-APB's) when [(FeFe2III)-Fe-II(OBut)(8)] precursor and T-pre = 363 K are used. On the other hand, grain boundary-scattering seems to be the main mechanism when [Fe-2(III)(OBut)(6)] is used. The Magnetoresistance (MR(H)) displayed an approximate linear behavior in the high field regime (H > 796 kA/m), with a maximum value at room-temperature of similar to 2-3 % for H = 1592 kA/m, irrespective from the transport mechanism.