35 resultados para YEAST CYTOCHROME-C
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O-2((1)Delta(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [O-18(2)((1)Delta(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).
Resumo:
In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.
Resumo:
Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120 mmHg for 45 min, which was followed by 15 min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15 min. In the RBM exposed to 3 mM phosphate and/or 100 mu M Ca2+, C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM rupture is not caused by a membrane stretching promoted by a markedly swollen matrix. It is shown that the widths of the ruptured regions of the OMM vary from 6 to 250 nm. Independent of the perforation size, herniation of the mitochondrial matrix appeared to have resulted in pushing the IMM through the perforation. A large, long focal herniation of the mitochondrial matrix, covered with the IMM, was associated with a rupture of the OMM that was as small as 6 nm. Contextually, the collapse of the selective permeability of the IMM may precede or follow the release of the mitochondrial proteins of the intermembrane space into the cytoplasm. When the MPT is a late event, exit of the intermembrane space proteins to the cytoplasm is unimpeded and occurs through channels that transverse the outer membrane, because so far, the inner membrane is impermeable. No channel within the outer membrane can expose to the cytoplasm a permeable inner membrane, because it would serve as a conduit for local herniation of the mitochondrial matrix. Anat Rec, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Intra-and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton-and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's F-S parameters. In addition, high values of haplotype diversity ((H) over cap) and low values of nucleotide diversity (pi), combined with a high number of low frequency haplotypes and values of theta(pi)<theta(W), suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.
Resumo:
Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO-stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content. CR increased eNOS and nNOS and the content of mitochondria] proteins (cytochrome c oxidase, citrate synthase, and mitofusin) in the brain. Furthermore, we established an in vitro system to study the neurological effects of CR using serum extracted from animals on this diet. In cultured neurons, CR serum enhanced nNOS expression and increased levels of nitrite (a NO product). CR serum also enhanced the levels of cytochrome c oxidase and increased citrate synthase activity and respiratory rates in neurons. CR serum effects were inhibited by L-NAME and mimicked by the NO donor SNAP. Furthermore, both CR sera and SNAP were capable of improving neuronal survival. Overall, our results indicate that CR increases mitochondrial biogenesis in a NO-mediated manner, resulting in enhanced reserve respiratory capacity and improved survival in neurons. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Recent studies indicate that ascidians are efficiently dispersed by human transport. We have chosen the mitochondrial gene cytochrome c oxidase subunit I (COI) to address whether Clavelina oblonga is an introduced species in the Brazilian coast. Colonies of C. oblonga were sampled in different localities along Atlantic coasts of USA, Panama, and Brazil. The sequencing of 92 colonies resulted in three haplotypes for the species, two unique to Florida and the other shared by exemplars collected in Brazil and Panama; the latter haplotype is identical to the published sequence of Azores. Our evidence, including the absence of C. oblonga in the country's northern tropical waters, its association with artificial habitats and lack of COI variation suggest that the species has been introduced in the southeastern and southern Brazilian coasts. Previous records (85 years old) suggest that it could be a relatively long-term introduction.
Resumo:
Two new records of Anopheles homunculus in the eastern part of the Atlantic Forest are reported. This species was found for the first time in Barra do Ouro district, Maquine municipality, Rio Grande do Sul state, located in the southern limit of the Atlantic Forest. The 2nd new record was in the Serra Bonita Reserve, Camacan municipality, southeast Bahia state. These records extend the geographical distribution of An. homunculus, suggesting that the species may be widely distributed in coastal areas of the Atlantic Forest. It is hypothesized that the disjunct distribution of the species may be caused by inadequate sampling, and also difficulties in species identification based only on female external characteristics. Species identification was based on morphological characters of the male, larva, and pupa, and corroborated by DNA sequence analyses, employing data from both 2nd internal transcribed spacer of nuclear ribosomal DNA and of mitochondrial cytochrome c oxidase subunit I.
Resumo:
The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
The vitamin E derivative (+)alpha-tocopheryl succinate (alpha-TOS) exerts pro-apoptotic effects in a wide range of tumors and is well tolerated by normal tissues. Previous studies point to a mitochondrial involvement in the action mechanism; however, the early steps have not been fully elucidated. In a model of acute promyelocytic leukemia (APL) derived from hCG-PML-RAR alpha transgenic mice, we demonstrated that alpha-TOS is as effective as arsenic trioxide or all-trans retinoic acid, the current gold standards of therapy. We also demonstrated that alpha-TOS induces an early dissipation of the mitochondrial membrane potential in APL cells and studies with isolated mitochondria revealed that this action may result from the inhibition of mitochondrial respiratory chain complex I. Moreover, alpha-TOS promoted accumulation of reactive oxygen species hours before mitochondrial cytochrome c release and caspases activation. Therefore, an in vivo antileukemic action and a novel mitochondrial target were revealed for alpha-TOS, as well as mitochondrial respiratory complex I was highlighted as potential target for anticancer therapy. Leukemia (2012) 26, 451-460; doi:10.1038/leu.2011.216; published online 26 August 2011
Resumo:
Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.
Resumo:
A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.
Resumo:
A VDAC é uma porina presente na MME cuja função é crucial no metabolismo energético, sobrevivência e morte celular. A caracterização da VDAC torna-se importante para a compreensão das inter-relações da mitocôndria com os diferentes componentes citosólicos, tais como a HK. A ligação HK-VDAC favorece a utilização do ATP intramitocondrial em células neuronais, a HK cerebral pode interagir de formas diferentes com a VDAC, o que resulta em diferentes sítios de ligação (sítios A e B). Os variados papéis metabólicos das isoformas da VDAC podem ser explicados pela presença de alterações pós-traducionais. No presente trabalho purificamos a VDAC1 mitocondrial neuronal proveniente de cérebro aviar. Paralelamente, comprovamos que a presença de múltiplas formas das VDACs 1 e 2 em cérebros murino e aviar, seja devida à presença de modificações pós-traducionais, nomeadamente a fosforilação. A proteína isolada apresentou peso molecular de 30KDa. Quando submetida à eletroforese e posteriormente à coloração para a identificação de fosfoproteínas, a mesma mostrou-se desfosforilada. O conhecimento da presença, ou ausência de fosforilação das VDACs, reside na importância de estabelecer-se as bases moleculares ligadas à existência de sítios A e B nas mitocôndrias neuronais.
Resumo:
Recently, a nongenomic cytotoxic component of the chemotherapeutic agent tamoxifen (TAM) has been identified that predominantly triggers mitochondrial events. The present study delineates the intracellular fate of TAM and studies its interaction with a spectrum of cell homeostasis modulators primarily relevant to mitochondria. The subcellular localization of TAM was assessed by confocal fluorescence microscopy. The effect of the modulators on TAM cytotoxicity was assessed by standard MTT assays. Our findings show that in estrogen receptor positive MCF7 breast adenocarcinoma cells and DU145 human prostate cancer cells, TAM largely accumulates in the mitochondria and endoplasmic reticulum, but not lysosomes. Our results further demonstrate that in MCF7, but not in DU145 cells, mitochondrial electron transport chain complex I and III inhibitors exacerbate TAM toxicity with an order of potency of myxothiazol = stigmatellin > rotenone > antimycin A, suggesting a cell-specific cytotoxic interplay between mitochondrial complex I and III function and TAM action.
Resumo:
We aim in this study to characterize the effect of cations and polycations on the formation of hybrid bilayer membranes (HBMs), especially those that mimic the inner mitochondrial membrane (IMM), with a proper composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin (CL) adsorbed on an alkanethiol monolayer. HBMs are versatile membrane mimetics that show promising results in sensor technology. Its formation depends on the fusion of vesicles on hydrophobic surfaces, a process that is not well understood at the molecular level. Our results showed to which extend and in which condition the presence of cations and polycations facilitate the formation of HBMs. The required time for lipid layer formation was reduced several times and the lipid layer reaches the expected thickness of 19.5 +/- 1.8 angstrom, in contrast to only 2 +/- 1.5 angstrom usually observed in the absence of cations. In the presence of specific concentrations of spermine and Ca2+ the amount of adsorbed phospholipids on the thiol layer increased nearly 70% compared to that observed when Na+ was used at concentrations 10 times higher. Divalent cations and polycations adsorb specifically on the lipid headgroups destabilizing the hydration forces, facilitating the process of vesicle fusion and formation of lipid monolayers. The concepts and conditions described in the manuscript will certainly help the development of the field of membrane biosensors. (C) 2011 Elsevier B.V. All rights reserved.