10 resultados para WHOLE CELLS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Nine strains of marine-derived fungi (Aspergillus sydowii Ce15, A. sydowii Ce19, Aspergillus sclerotiorum CBMAI 849, Bionectria sp. Ce5, Beauveria felina CBMAI 738, Cladosporium cladosporioides CBMAI 857, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, and Penicillium miczynskii Gc5) were screened, catalyzing the asymmetric bioreduction of 1-(4-methoxyphenyl) ethanone 1 to its corresponding 1-(4-methoxyphenyl) ethanol 2. A. sydowii Ce15 and Bionectria sp. Ce5 produced the enantiopure (R)-alcohol 2 (>99% ee) in accordance with the anti-Prelog rule and, the fungi B. felina CBMAI 738 (>99% ee) and P. citrinum CBMAI 1186 (69% ee) in accordance with the Prelog rule. Stereoselective bioreduction by whole cells of marine-derived fungi described by us is important for the production of new reductases from marine-derived fungi.
Resumo:
The screening. biomass growth of lipase-producing fungus isolated from different sources and available at URM (University Recife Mycologia). as well as, the immobilization and utilization of the whole cells for the transesterification of babassu oil were investigated. Rhizopus oryzae (URM 3231, 4692), Mucor circinelloides (URM 4140, 4182) and Penicillium citrinum URM 4216 were considered to be good intracellular lipase producers whereas those from Mucor hiemalis URM 4144 and Mucor piriformis URM 4145 were weaker. Fungi biomass containing high lipase activities was immobilized on different biomass support particles (BSPs) and with the exception of Penicillium citrinum URM 4216 all the other fungi strains exhibited high lipase activity (20-50 Ug(-1)) when immobilized in situ using polyurethane foam particles. Transesterification activities of the immobilized whole cells were evaluated in the ethanolysis reaction with babassu oil and the highest performance was attained by M. circinelloides URM 4182 giving 83.22 +/- 3.68% ester yield in less than 96 h reaction. The biocatalyst operational stability was also assessed and an inactivation profile was found to follow the Arrhenius model, revealing values of 26 days and 2.6 x 10(-2)day(-1), for half-life and a deactivation coefficient, respectively. The purified product (biodiesel) exhibited viscosity (6.63 cSt) close to the value to attend specifications by the ASTM 06751 to be used as biofuel. Results are favorable compared with data already reported in the literature and demonstrated that M. circinelloides URM 4182 whole cells is a cheaper biocatalyst that can be used in the biodiesel synthesis. (C) 2012 Elsevier B.V. All rights reserved.
Marine Fungi Aspergillus sydowii and Trichoderma sp Catalyze the Hydrolysis of Benzyl Glycidyl Ether
Resumo:
Whole cells of the marine fungi Aspergillus sydowii Gc12, Penicillium raistrickii Ce16, P. miczynskii Gc5, and Trichoderma sp. Gc1, isolated from marine sponges of the South Atlantic Ocean (Brazil), have been screened for the enzymatic resolution of (+/-)-2-(benzyloxymethyl)oxirane (benzyl glycidyl ether; 1). Whole cells of A. sydowii Gc12 catalyzed the enzymatic hydrolysis of (R,S)-1 to yield (R)-1 with an enantiomeric excess (ee) of 24-46% and 3-(benzyloxy)propane-1,2-diol (2) with ee values < 10%. In contrast, whole cells of Trichoderma sp. Gc1 afforded (S)-1 with ee values up to 60% and yields up to 39%, together with (R)-2 in 25% yield and an ee of 32%. This is the first published example of the hydrolysis of 1 by whole cells of marine fungi isolated from the South Atlantic Ocean. The hydrolases from the two studied fungi exhibited complementary regioselectivity in opening the epoxide ring of racemic 1, with those of A. sydowii Gc12 showing an (S) preference and those of Trichoderma sp. Gc1 presenting an (R) preference for the substrate.
Resumo:
Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.
Resumo:
In gene-banking, primordial germ cells (PGCs), which are embryonic precursor cells of germ cells, are useful for cryopreservation because PGCs have a potential to differentiate into both eggs and sperm via germ-line chimera. Here, we have established vitrification methods for PGCs cryopreservation using 12- to 17-somite stage embryos in loach, Misgurnus anguillicaudatus, which were dechorionated, removed their yolk and injected with green fluorescent protein (GFP) -nos1 3'UTR mRNA to visualize their PGCs. In order to optimize cryopreservation medium for vitrification, the toxicity of cryoprotectants was analyzed. Different concentrations (2, 3, 4, 5 m) of dimethyl sulfoxide (DMSO), methanol (MeOH), ethylene glycol (EG) and propylene glycol (PG) as cryoprotectants were tested. Then, 5 m DMSO showed significantly-high toxicity. Based on this information, combinations called DMP (2 m (14.2% [v/v]) DMSO, 2 m (8.1% [v/v]) MeOH and 2 m (14.4% [v/v]) PG), DP (2 m (14.2% [v/v]) DMSO and 4 m (28.7% [v/v]) PG) and DE (2.1 m (15% [v/v]) DMSO and 2.7 m (15% [v/v]) EG) were evaluated for their toxicities and efficacy of PGCs cryopreservation using two types of equilibration step: direct immersion of cryopreservation media (one-step) and serial exposure to half and full concentration of cryopreservation media (two-step). Viable PGCs were obtained from post-thaw embryos which were cryopreserved by DP and DE with both 1- and 2-step equilibrations. Despite DP showing the highest toxicity, it gave the highest survival rate of embryonic cells after cryopreservation. When PGCs recovered from vitrified embryos were transplanted into host embryos at the blastula stage, the transplanted PGCs were able to migrate to a host genital ridge similarly as endogenous PGCs. It suggests that our methods could be useful to create a germ-line chimera for the production of gametes from PGCs of cryopreserved embryos.
Resumo:
Patients with type 2 diabetes mellitus (T2DM) exhibit insulin resistance associated with obesity and inflammatory response, besides an increased level of oxidative DNA damage as a consequence of the hyperglycemic condition and the generation of reactive oxygen species (ROS). In order to provide information on the mechanisms involved in the pathophysiology of T2DM, we analyzed the transcriptional expression patterns exhibited by peripheral blood mononuclear cells (PBMCs) from patients with T2DM compared to non-diabetic subjects, by investigating several biological processes: inflammatory and immune responses, responses to oxidative stress and hypoxia, fatty acid processing, and DNA repair. PBMCs were obtained from 20 T2DM patients and eight non-diabetic subjects. Total RNA was hybridized to Agilent whole human genome 4x44K one-color oligo-microarray. Microarray data were analyzed using the GeneSpring GX 11.0 software (Agilent). We used BRB-ArrayTools software (gene set analysis - GSA) to investigate significant gene sets and the Genomica tool to study a possible influence of clinical features on gene expression profiles. We showed that PBMCs from T2DM patients presented significant changes in gene expression, exhibiting 1320 differentially expressed genes compared to the control group. A great number of genes were involved in biological processes implicated in the pathogenesis of T2DM. Among the genes with high fold-change values, the up-regulated ones were associated with fatty acid metabolism and protection against lipid-induced oxidative stress, while the down-regulated ones were implicated in the suppression of pro-inflammatory cytokines production and DNA repair. Moreover, we identified two significant signaling pathways: adipocytokine, related to insulin resistance; and ceramide, related to oxidative stress and induction of apoptosis. In addition, expression profiles were not influenced by patient features, such as age, gender, obesity, pre/post-menopause age, neuropathy, glycemia, and HbA(1c) percentage. Hence, by studying expression profiles of PBMCs, we provided quantitative and qualitative differences and similarities between T2DM patients and non-diabetic individuals, contributing with new perspectives for a better understanding of the disease. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.
Resumo:
Background: Several studies in Drosophila have shown excessive movement of retrogenes from the X chromosome to autosomes, and that these genes are frequently expressed in the testis. This phenomenon has led to several hypotheses invoking natural selection as the process driving male-biased genes to the autosomes. Metta and Schlotterer (BMC Evol Biol 2010, 10:114) analyzed a set of retrogenes where the parental gene has been subsequently lost. They assumed that this class of retrogenes replaced the ancestral functions of the parental gene, and reported that these retrogenes, although mostly originating from movement out of the X chromosome, showed female-biased or unbiased expression. These observations led the authors to suggest that selective forces (such as meiotic sex chromosome inactivation and sexual antagonism) were not responsible for the observed pattern of retrogene movement out of the X chromosome. Results: We reanalyzed the dataset published by Metta and Schlotterer and found several issues that led us to a different conclusion. In particular, Metta and Schlotterer used a dataset combined with expression data in which significant sex-biased expression is not detectable. First, the authors used a segmental dataset where the genes selected for analysis were less testis-biased in expression than those that were excluded from the study. Second, sex-biased expression was defined by comparing male and female whole-body data and not the expression of these genes in gonadal tissues. This approach significantly reduces the probability of detecting sex-biased expressed genes, which explains why the vast majority of the genes analyzed (parental and retrogenes) were equally expressed in both males and females. Third, the female-biased expression observed by Metta and Schltterer is mostly found for parental genes located on the X chromosome, which is known to be enriched with genes with female-biased expression. Fourth, using additional gonad expression data, we found that autosomal genes analyzed by Metta and Schlotterer are less up regulated in ovaries and have higher chance to be expressed in meiotic cells of spermatogenesis when compared to X-linked genes. Conclusions: The criteria used to select retrogenes and the sex-biased expression data based on whole adult flies generated a segmental dataset of female-biased and unbiased expressed genes that was unable to detect the higher propensity of autosomal retrogenes to be expressed in males. Thus, there is no support for the authors' view that the movement of new retrogenes, which originated from X-linked parental genes, was not driven by selection. Therefore, selection-based genetic models remain the most parsimonious explanations for the observed chromosomal distribution of retrogenes.
Resumo:
Brossi P.M., Baccarin R.Y.A. & Massoco C.O. 2012 Do blood components affect the production of reactive oxygen species (ROS) by equine synovial cells in vitro? Pesquisa Veterinaria Brasileira 32(12):1355-1360. Departamento de Clinica Medica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Butanta, Sao Paulo, SP 5508-210, Brazil. E-mail: baccarin@ usp.br Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)(4) - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.
Resumo:
Background We have previously demonstrated that increased rates of superoxide generation by extra-mitochondrial enzymes induce the activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) in the livers of hypertriglyceridemic (HTG) mice. The resulting mild uncoupling mediated by mitoKATP protects mitochondria against oxidative damage. In this study, we investigate whether immune cells from HTG mice also present increased mitoKATP activity and evaluate the influence of this trait on cell redox state and viability. Methods Oxygen consumption (Clark-type electrode), reactive oxygen species production (dihydroethidium and H2-DCF-DA probes) and cell death (annexin V, cytocrome c release and Trypan blue exclusion) were determined in spleen mononuclear cells. Results HTG mice mononuclear cells displayed increased mitoKATP activity, as evidenced by higher resting respiration rates that were sensitive to mitoKATP antagonists. Whole cell superoxide production and apoptosis rates were increased in HTG cells. Inhibition of mitoKATP further increased the production of reactive oxygen species and apoptosis in these cells. Incubation with HTG serum induced apoptosis more strongly in WT cells than in HTG mononuclear cells. Cytochrome c release into the cytosol and caspase 8 activity were both increased in HTG cells, indicating that cell death signaling starts upstream of the mitochondria but does involve this organelle. Accordingly, a reduced number of blood circulating lymphocytes was found in HTG mice. Conclusions These results demonstrate that spleen mononuclear cells from hyperlipidemic mice have more active mitoKATP channels, which downregulate mitochondrial superoxide generation. The increased apoptosis rate observed in these cells is exacerbated by closing the mitoKATP channels. Thus, mitoKATP opening acts as a protective mechanism that reduces cell death induced by hyperlipidemia.