17 resultados para Vehicle Dynamics Modeling.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the field of vehicle dynamics, commercial software can aid the designer during the conceptual and detailed design phases. Simulations using these tools can quickly provide specific design metrics, such as yaw and lateral velocity, for standard maneuvers. However, it remains challenging to correlate these metrics with empirical quantities that depend on many external parameters and design specifications. This scenario is the case with tire wear, which depends on the frictional work developed by the tire-road contact. In this study, an approach is proposed to estimate the tire-road friction during steady-state longitudinal and cornering maneuvers. Using this approach, a qualitative formula for tire wear evaluation is developed, and conceptual design analyses of cornering maneuvers are performed using simplified vehicle models. The influence of some design parameters such as cornering stiffness, the distance between the axles, and the steer angle ratio between the steering axles for vehicles with two steering axles is evaluated. The proposed methodology allows the designer to predict tire wear using simplified vehicle models during the conceptual design phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most of the works published on hydrodynamic parameter identification of open-frame underwater vehicles focus their attention almost exclusively on good coherence between simulated and measured responses, giving less importance to the determination of “actual values” for hydrodynamic parameters. To gain insight into hydrodynamic parameter experimental identification of open-frame underwater vehicles, an experimental identification procedure is proposed here to determine parameters of uncoupled and coupled models. The identification procedure includes: (i) a prior estimation of actual values of the forces/torques applied to the vehicle, (ii) identification of drag parameters from constant velocity tests and (iii) identification of inertia and coupling parameters from oscillatory tests; at this stage, the estimated values of drag parameter obtained in item (ii) are used. The procedure proposed here was used to identify the hydrodynamic parameters of LAURS—an unmanned underwater vehicle developed at the University of São Paulo. The thruster–thruster and thruster–hull interactions and the advance velocity of the vehicle are shown to have a strong impact on the efficiency of thrusters appended to open-frame underwater vehicles, especially for high advance velocities. Results of tests with excitation in 1-DOF and 3-DOF are reported and discussed, showing the feasibility of the developed procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents major results from a novel dynamic model intended to deterministically represent the complex relation between HIV-1 and the human immune system. The novel structure of the model extends previous work by representing different host anatomic compartments under a more in-depth cellular and molecular immunological phenomenology. Recently identified mechanisms related to HIV-1 infection as well as other well known relevant mechanisms typically ignored in mathematical models of HIV-1 pathogenesis and immunology, such as cell-cell transmission, are also addressed. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multi-scale synoptic circulation system in the southeastern Brazil (SEBRA) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or ""features,"" are identified from previous observational studies. These features include the southward-flowing Brazil Current (BC), the eddies off Cabo Sao Tome (CST - 22 degrees S) and off Cabo Frio (CF - 23 degrees S), and the upwelling region off CF and CST. Their synoptic water-mass (T-S) structures are characterized and parameterized to develop temperature-salinity (T-S) feature models. Following [Gangopadhyay, A., Robinson, A.R., Haley, PJ., Leslie, W.J., Lozano, C.j., Bisagni, J., Yu, Z., 2003. Feature-oriented regional modeling and simulation (forms) in the gulf of maine and georges bank. Cont. Shelf Res. 23 (3-4), 317-353] methodology, a synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in this region is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and objectively analyzed with available background climatology in the deep region. These initialization fields are then used for dynamical simulations via the Princeton Ocean Model (POM). A few first applications of this methodology are presented in this paper. These include the BC meandering, the BC-eddy interaction and the meander-eddy-upwelling system (MEUS) simulations. Preliminary validation results include realistic wave-growth and eddy formation and sustained upwelling. Our future plan includes the application of these feature models with satellite, in-situ data and advanced data-assimilation schemes for nowcasting and forecasting the SEBRA region. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper aims at contributing to a discussion, opened by several authors, on the proper equation of motion that governs the vertical collapse of buildings. The most striking and tragic example is that of the World Trade Center Twin Towers, in New York City, about 10 years ago. This is a very complex problem and, besides dynamics, the analysis involves several areas of knowledge in mechanics, such as structural engineering, materials sciences, and thermodynamics, among others. Therefore, the goal of this work is far from claiming to deal with the problem in its completeness, leaving aside discussions about the modeling of the resistive load to collapse, for example. However, the following analysis, restricted to the study of motion, shows that the problem in question holds great similarity to the classic falling-chain problem, very much addressed in a number of different versions as the pioneering one, by von Buquoy or the one by Cayley. Following previous works, a simple single-degree-of-freedom model was readdressed and conceptually discussed. The form of Lagrange's equation, which leads to a proper equation of motion for the collapsing building, is a general and extended dissipative form, which is proper for systems with mass varying explicitly with position. The additional dissipative generalized force term, which was present in the extended form of the Lagrange equation, was shown to be derivable from a Rayleigh-like energy function. DOI: 10.1061/(ASCE)EM.1943-7889.0000453. (C) 2012 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of hydrodynamic coefficients of full scale underwater vehicles using system identification (SI) is an extremely powerful technique. The procedure is based on experimental runs and on the analysis of on-board sensors and thrusters signals. The technique is cost effective and it has high repeatability; however, for open-frame underwater vehicles, it lacks accuracy due to the sensors' noise and the poor modeling of thruster-hull and thruster-thruster interaction effects. In this work, forced oscillation tests were undertaken with a full scale open-frame underwater vehicle. These conducted tests are unique in the sense that there are not many examples in the literature taking advantage of a PMM installation for testing a prototype and; consequently, allowing the comparison between the experimental results and the ones estimated by parameter identification. The Morison's equation inertia and drag coefficients were estimated with two parameter identification methods, that is, the weighted and the ordinary least-squares procedures. It was verified that the in-line force estimated from Morison's equation agrees well with the measured one except in the region around the motion inversion points. On the other hand, the error analysis showed that the ordinary least-squares provided better accuracy and, therefore, was used to evaluate the ratio between inertia and drag forces for a range of Keulegan-Carpenter and Reynolds numbers. It was concluded that, although both experimental and estimation techniques proved to be powerful tools for evaluation of an open-frame underwater vehicle's hydrodynamic coefficients, the research provided a rich amount of reference data for comparison with reduced models as well as for dynamic motion simulation of ROVs. [DOI: 10.1115/1.4004952]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of antiretroviral therapy has proven to be remarkably effective in controlling the progression of human immunodeficiency virus (HIV) infection and prolonging patient's survival. Therapy however may fail and therefore these benefits can be compromised by the emergence of HIV strains that are resistant to the therapy. In view of these facts, the question of finding the reason for which drug-resistant strains emerge during therapy has become a worldwide problem of great interest. This paper presents a deterministic HIV-1 model to examine the mechanisms underlying the emergence of drug-resistance during therapy. The aim of this study is to determine whether, and how fast, antiretroviral therapy may determine the emergence of drug resistance by calculating the basic reproductive numbers. The existence, feasibility and local stability of the equilibriums are also analyzed. By performing numerical simulations we show that Hopf bifurcation may occur. The model suggests that the individuals with drug-resistant infection may play an important role in the epidemic of HIV. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases involved in the extracellular matrix degradation. MMP-2 and MMP9 are overexpressed in several human cancer types, including melanoma, thus the development of new compounds to inhibit MMPs' activity is desirable. Molecular dynamic simulation and molecular properties calculations were performed on a set of novel beta-N-biaryl ether sulfonamide-based hydroxamates, reported as MMP-2 and MMP-9 inhibitors, for providing data to develop an exploratory analysis. Thermodynamic, electronic, and steric descriptors have significantly discriminated highly active from moderately and less active inhibitors of MMP-2 whereas apparent partition coefficient at pH 1.5 was also significant for the MMP-9 data set. Compound 47 was considered an outlier in all analysis, indicating the presence of a bulky substituent group in R3 is crucial to this set of inhibitors for the establishment of molecular interactions with the S1 subsite of both enzymes, but there is a limit. (C) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695345]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations of the model protein chignolin with explicit solvent were carried out, in order to analyze the influence of the Berendsen thermostat on the evolution and folding of the peptide. The dependence of the peptide behavior on temperature was tested with the commonly employed thermostat scheme consisting of one thermostat for the protein and another for the solvent. The thermostat coupling time of the protein was increased to infinity, when the protein is not in direct contact with the thermal bath, a situation known as minimally invasive thermostat. In agreement with other works, it was observed that only in the last situation the instantaneous temperature of the model protein obeys a canonical distribution. As for the folding studies, it was shown that, in the applications of the commonly utilized thermostat schemes, the systems are trapped in local minima regions from which it has difficulty escaping. With the minimally invasive thermostat the time that the protein needs to fold was reduced by two to three times. These results show that the obstacles to the evolution of the extended peptide to the folded structure can be overcome when the temperature of the peptide is not directly controlled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is possible to determine the optimum time for permanence of vegetative propagules (mini-cuttings) inside a greenhouse for rooting, and this value can be used to optimize the structure of the nursery. The aim of this study was to determine the dynamics of adventitious rooting in mini-cuttings of three clones of Eucalyptus benthamii x Eucalyptus dunnii. Sprouts of H12, H19 and H20 clones were collected from mini-stumps that were planted in gutters containing sand and grown in a semi-hydroponic system. The basal region of the mini-cuttings was immersed in 2,000 mg L-1 indole-3-butyric acid (IBA) solution for 10 seconds. The rooting percentage of the mini-cuttings, the total length of the root system and the rooting rate per mini-cutting were also evaluated at 0 (time of planting), 7, 14, 21, 28, 35, 42, 49 and 56 days. We used logistic and exponential regression to mathematically model the speed of rhizogenesis. The rooting percentage was best represented as a logistic model, and the total length of the root system was best represented as an exponential model. The clones had different speeds of adventitious rooting. The optimum time for permanence of the mini-cuttings inside the greenhouse for rooting was between 35 and 42 days, and varied depending on the genetic material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model and numerical simulations are presented to investigate the dynamics of gas, oil and water flow in a pipeline-riser system. The pipeline is modeled as a lumped parameter system and considers two switchable states: one in which the gas is able to penetrate into the riser and another in which there is a liquid accumulation front, preventing the gas from penetrating the riser. The riser model considers a distributed parameter system, in which movable nodes are used to evaluate local conditions along the subsystem. Mass transfer effects are modeled by using a black oil approximation. The model predicts the liquid penetration length in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The method of characteristics is used to simplify the differentiation of the resulting hyperbolic system of equations. The equations are discretized and integrated using an implicit method with a predictor-corrector scheme for the treatment of the nonlinearities. Simulations corresponding to severe slugging conditions are presented and compared to results obtained with OLGA computer code, showing a very good agreement. A description of the types of severe slugging for the three-phase flow of gas, oil and water in a pipeline-riser system with mass transfer effects are presented, as well as a stability map. (C) 2011 Elsevier Ltd. All rights reserved.