5 resultados para Variable-chromosome-length

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Akodontini is the second most speciose tribe of sigmodontine rodents, one of the most diverse groups of neotropical mammals. Molecular phylogenetic analyses are discordant regarding the interrelationships of genera, with low support for some clades. However, two clades are concordant, one (clade A) with Akodon sensu strictu (excluding Akodon serrensis), "Akodon" serrensis, Bibimys, Deltamys, Juscelinomys, Necromys, Oxymycterus, Podoxymys, Thalpomys and Thaptomys, and another (clade B) with Blarinomys, Brucepattersonius, Kunsia, Lenoxus and Scapteromys. Here, we present chromosome painting using Akodon paranaensis (APA) Y paint, after suppression of simple repetitive sequences, on ten Akodontini genera. Partial Y chromosome homology, in addition to the homology already reported on the Akodon genus, was detected on the Y chromosomes of "A." serrensis, Thaptomys, Deltamys, Necromys and Thalpomys and on Y and X chromosomes in Oxymycterus. In Blarinomys, Brucepattersonius, Scapteromys and Kunsia, no APA Y signal was observed using different hybridization conditions; APA X paint gave positive signals only on the X chromosome in all genera. The Y chromosome homology was variable in size and positioning among the species studied as follow: (1) whole acrocentric Y chromosome in Akodon and "A." serrensis, (2) Yp and pericentromeric region in submetacentric Y of Necromys and Thaptomys, (3) pericentromeric region in acrocentric Y of Deltamys, (4) distal Yq in the acrocentric Y chromosome of Thalpomys and (5) proximal Yq in the acrocentric Y and Xp in the basal clade A genus Oxymycterus. The results suggest that the homology involves pairing (pseudoautosomal) and additional regions that have undergone rearrangement during divergence. The widespread Y homology represents a phylogenetic signal in Akodontini that provides additional evidence supporting the monophyly of clade A. The findings also raise questions about the evolution of the pseudoautosomal region observed in Oxymycterus. The Y chromosomes of these closely related species seem to have undergone dynamic rearrangements, including restructuring and reduction of homologous segments. Furthermore, the changes observed may indicate progressive attrition of the Y chromosome in more distantly related species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we characterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submicroscopic chromosomal anomalies play an important role in the etiology of craniofacial malformations, including midline facial defects with hypertelorism (MFDH). MFDH is a common feature combination in several conditions, of which Frontonasal Dysplasia is the most frequently encountered manifestation; in most cases the etiology remains unknown. We identified a parent to child transmission of a 6.2 Mb interstitial deletion of chromosome region 2q36.1q36.3 by array-CGH and confirmed by FISH and microsatellite analysis. The patient and her mother both presented an MFDH phenotype although the phenotype in the mother was much milder than her daughter. Inspection of haplotype segregation within the family of 2q36.1 region suggests that the deletion arose on a chromosome derived from the maternal grandfather. Evidences based on FISH, microsatellite and array-CGH analysis point to a high frequency mosaicism for presence of a deleted region 2q36 occurring in blood of the mother. The frequency of mosaicism in other tissues could not be determined. We here suggest that the milder phenotype observed in the proband's mother can be explained by the mosaic state of the deletion. This most likely arose by an early embryonic deletion in the maternal embryo resulting in both gonadal and somatic mosaicism of two cell lines, with and without the deleted chromosome. The occurrence of gonadal mosaicism increases the recurrence risk significantly and is often either underestimated or not even taken into account in genetic counseling where new mutation is suspected. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 2-day method using flow cytometry and FISH for interphase cells was developed to detect monosomy 7 cells in myelodysplastic syndrome patients. The method, Interphase Chromosome Flow-FISH (IC Flow-FISH), involves fixation of leukocytes from blood, membrane permeabilization, hybridization of cellular DNA with peptide nucleic acid probes with cells intact, and analysis by flow cytometry. Hundreds to thousands of monosomy 7 cells were consistently detected from 10-20 mL of blood in patients with monosomy 7. Proportions of monosomy 7 cells detected in IC Flow-FISH were compared with results from conventional cytogenetics; identification of monosomy 7 populations was verified with FACS; and patient and donor cells were mixed to test for sensitivity. IC Flow-FISH allows for detecting monosomy 7 without requiring bone marrow procurement or the necessity of metaphase spreads, and wider applications to other chromosomal abnormalities are in development. (Blood. 2012; 120(15): e54-e59)