37 resultados para Valence Isomers
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The neutron-rich lead isotopes, up to Pb-216, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond Pb-208.
Resumo:
Corrole and four of its isomers with subtle structural changes promoted by exchange of nitrogen and carbon atoms in the corrole ring have been studied by traveling wave ion mobility mass spectrometry and collision induced dissociation experiments. Significant differences in shapes and charge distributions for their protonated molecules were found to lead to contrasting gas phase mobilities, most particularly for corrorin, the most "confused" isomer. Accordingly, corrorin was predicted by B3LYP/6-31g(d,p) and collisional cross section calculations to display the most compact tri-dimensional structure, whereas NCC4 and corrole were found to be the most planar isomers. Better resolution between the corrole isomers was achieved using the more polarizable and massive CO2 as the drift gas. Sequential losses of HF molecules were found to dominate the dissociation chemistry of the protonated molecules of these corrole isomers, but their unique structures caused contrasting labilities towards CID, whereas NCC4 showed a peculiar and structurally diagnostic loss of NH3, allowing its prompt differentiation from the other isomers.
Resumo:
Optical properties of intentionally disordered multiple quantum well (QW) system embedded in a wide AlGaAs parabolic well were investigated by photoluminescence (PL) measurements as functions of the laser excitation power and the temperature. The characterization of the carriers localized in the individual wells was allowed due to the artificial disorder that caused spectral separation of the photoluminescence lines emitted by different wells. We observed that the photoluminescence peak intensity from each quantum well shifted to high energy as the excitation power was increased. This blue-shift is associated with the filling of localized states in the valence band tail. We also found that the dependence of the peak intensity on the temperature is very sensitive to the excitation power. The temperature dependence of the photoluminescence peak energy from each QW was well fitted using a model that takes into account the thermal redistribution of the localized carriers. Our results demonstrate that the band tails in the studied structures are caused by alloy potential fluctuations and the band tail states dominate the emission from the peripheral wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730769]
Resumo:
The photochemical cis-trans isomerization of the 4-{4-[2-(pyridin-4-yl)ethenyl]phenyl}-2,2': 6',2''-terpyridine ligand (vpytpy) was investigated by UV-vis, NMR and TWIM-MS. Ion mobility mass spectrometry was performed pursuing the quantification of the isomeric composition during photolysis, however an in-source trans-to-cis isomerization process was observed. In order to overcome this inherent phenomenon, the isomerization of the vpytpy species was suppressed by complexation, reacting with iron(II) ions, and forming the [Fe(vpytpy)(2)](2+) complex. The strategy of "freezing" the cis-trans isomerizable ligand at a given geometric conformation was effective, preventing further isomerization, thus allowing the distinction of each one of the isomers in the photolysed mixture. In addition, the experimental drift times were related to the calculated surface areas of the three possible cis-cis, cis-trans and trans-trans iron(II) complex isomers. The stabilization of the ligand in a given conformation also allows us to obtain the cis-cis and cis-trans complexes exhibiting the ligand in the metastable cis-conformation, as well as in the thermodynamically stable trans-conformation.
Resumo:
Complexes of the type {[(pyS)Ru(NH3)(4)](2)-mu-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 x 10(8) and 5.56 x 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the p-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.
Resumo:
The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells.
Resumo:
Lead-based multiferroics perovskites with nominal compositions Pb(Fe1/2Nb1/2)O3 and Pb(Fe2/3W1/3)O3 were synthesized following a two-stage method. Magnetic proprieties were investigated and correlated to anelastic proprieties, measured by the conventional pulse-echo method. The discussions are focused in the region around 250 K, where magnetoelectroelastic instabilities have been observed. X-ray absorption nearedge structure (XANES) study further indicates that the edge position varies with temperature revealing a fluctuation on the valence of iron ions with the temperature, which can be related to a variation in anelastic and magnetic proprieties.
Resumo:
In the Amazon Basin, within a landscape of infertile soils, fertile Anthrosols of pre-Columbian origin occur (Amazonian Dark Earths or terra preta de Indio). These soils are characterized by high amounts of charred organic matter (black carbon, biochar) and high nutrient stocks. Frequently, they were considered as sign for intensive landscape domestication by way of sedentary agriculture and as sign for large settlements in pre-Columbian Amazonia. Beyond the archaeological interest in Amazonian Dark Earths, they increasingly receive attention because it is assumed that they could serve as a model for sustainable agriculture in the humid tropics (terra preta nova). Both questions lack information about the pre-Columbian practices which were responsible for the genesis of Amazonian Dark Earths. It has often been hypothesized that deposition of faeces could have contributed to the high nutrient stocks in these soils, but no study has focussed on this question yet. We analyzed the biomarkers for faeces 5 beta-stanols as well as their precursors and their 5 alpha-isomers in Amazonian Dark Earths and reference soils to investigate the input of faeces into Amazonian Dark Earths. Using Amazonian Dark Earths as example, we discuss the application of threshold values for specific stanols to evaluate faeces deposition in archaeological soils and demonstrate an alternative approach which is based on a comparison of the concentration patterns of 5 beta-stanols with the concentration patterns of their precursors and their 5 alpha-isomers as well as with local backgrounds. The concentration patterns of sterols show that faeces were deposited on Amazonian Dark Earths. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]
Resumo:
RATIONALE: Oxazolines have attracted the attention of researchers worldwide due to their versatility as carboxylic acid protecting groups, chiral auxiliaries, and ligands for asymmetric catalysis. Electrospray ionization tandem mass spectrometric (ESI-MS/MS) analysis of five 2-oxazoline derivatives has been conducted, in order to understand the influence of the side chain on the gas-phase dissociation of these protonated compounds under collision-induced dissociation (CID) conditions. METHODS: Mass spectrometric analyses were conducted in a quadrupole time-of-flight (Q-TOF) spectrometer fitted with electrospray ionization source. Protonation sites have been proposed on the basis of the gas-phase basicity, proton affinity, atomic charges, and a molecular electrostatic potential map obtained on the basis of the quantum chemistry calculations at the B3LYP/6-31 + G(d, p) and G2(MP2) levels. RESULTS: Analysis of the atomic charges, gas-phase basicity and proton affinities values indicates that the nitrogen atom is a possible proton acceptor site. On the basis of these results, two main fragmentation processes have been suggested: one taking place via neutral elimination of the oxazoline moiety (99 u) and another occurring by sequential elimination of neutral fragments with 72 u and 27 u. These processes should lead to formation of R+. CONCLUSIONS: The ESI-MS/MS experiments have shown that the side chain could affect the dissociation mechanism of protonated 2-oxazoline derivatives. For the compound that exhibits a hydroxyl at the lateral chain, water loss has been suggested to happen through an E2-type elimination, in an exothermic step. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resolution of isomeric multi-ruthenated porphyrins by travelling wave ion mobility mass spectrometry
Resumo:
The ability of travelling wave ion mobility mass spectrometry (TWIM-MS) to resolve cationic meta/para and cis/trans isomers of mono-, di-, tri- and tetra-ruthenated supramolecular porphyrins was investigated. All meta isomers were found to be more compact than the para isomers and therefore mixtures of all isomeric pairs could be properly resolved with baseline or close to baseline peak-to-peak resolution (Rp-p). Di-substituted cis/trans isomers were found, however, to present very similar drift times and could not be resolved. N-2 and CO2 were tested as the drift gas, and similar a but considerably better values of R-p and Rp-p were always observed for CO2. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Bi3.25La0.75-xErxTi3O12 and Bi3.25La0.75Ti3-xErxO12-delta ceramics were prepared and studied in this work in terms of dopant-induced phase and microstructure development as well as dielectric response. The results show that introduction of Er3+ tends to reduce the materials' sintering temperature and average grain size. Moreover, it was noted that in these systems the substitution site of this dopant is controlled by valence state and ionic radii mismatch effects. In particular, even when a nominal substitution of Ti4+ is conceived, here it is found that Er3+ also incorporates at the (Bi,La)(3+) sites. These and other interesting concluding remarks from this work, including Er3+ tolerance, were possible only after comparing, especially, the X-ray diffraction results and the intrinsic ferroelectric characteristics extracted from the dielectric measurements. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A mixed-valence complex, [Fe(III)Fe(II)L1(mu-OAc)(2)]BF4 center dot H2O, where the ligand H(2)L1 = 2-{[[3-[((bis-(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The (FeFeII)-Fe-III and Fe-2(III) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1).S-2, where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The (FeFeII)-Fe-III complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe-2(III) complex showed an EPR spectrum due to population of the S-tot = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the (FeFeII)-Fe-III complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 x 10(-3) s(-1); K-m = 4.63 x 10(-3) mol L-1) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe-III. It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(mu-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.
Resumo:
Nestmate recognition is fundamental for the maintenance of social organization in insect nests. It is becoming well recognized that cuticle hydrocarbons mediate the recognition process, although the origin of recognition cues in stingless bees remains poorly explored. The present study investigates the effects of endogenously-produced and environmentally-acquired components in cuticular hydrocarbons in stingless bees. The tests are conducted using colonies of Plebeia droryana Friese and Plebeia remota Holmberg. Recognition tests are performed with four different groups: conspecific nestmates, conspecific non-nestmates, heterospecifics and conspecific, genetically-related individuals that emerge in a heterospecific nest. This last group is produced by introducing brood cells of P. droryana into a P. remota colony, and the resulting adult bees are tested for acceptance 10 days after emergence. For all groups, 15 individuals are sampled for chemical analysis. The results show the acceptance of all conspecific nestmates, and the rejection of almost every conspecific non-nestmate and every heterospecific bee. Genetically-related individuals emerging from heterospecific nests present intermediate rejection (66.7% rejection). Chemical analysis shows that P. droryana individuals emerging in a P. remota nest have small amounts of alkene and diene isomers found in P. remota cuticle that are not found in workers from the natal nest. The data clearly show that the majority of the compounds present in P. droryana cuticle are endogenously produced, although a few unsaturated compounds are acquired from the environment, increasing the chemical differences and, consequently, the rejection percentages.
Resumo:
The electronic stopping cross section (SCS) of Al2O3 for proton beams is studied both experimentally and theoretically. The measurements are made for proton energies from 40 keV up to 1 MeV, which cover the maximum stopping region, using two experimental methods, the transmission technique at low energies (similar to 40-175 keV) and the Rutherford backscattering at high energies (approximate to 190-1000 keV). These new data reveal an increment of 16% in the SCS around the maximum stopping with respect to older measurements. The theoretical study includes electronic stopping power calculations based on the dielectric formalism and on the transport cross section (TCS) model to describe the electron excitations of Al2O3. The non-linear TCS calculations of the SCS for valence electrons together with the generalized oscillator strengths (GOS) model for the core electrons compare well with the experimental data in the whole range of energies considered.