9 resultados para Tissue Viability Imaging
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: The high and increasing prevalence of Dilated Cardiomyopathy (DCM) represents a serious public health issue. Novel technologies have been used aiming to improve diagnosis and the therapeutic approach. In this context, speckle tracking echocardiography (STE) uses natural myocardial markers to analyze the systolic deformation of the left ventricle (LV). Objective: Measure the longitudinal transmural global strain (GS) of the LV through STE in patients with severe DCM, comparing the results with normal individuals and with echocardiographic parameters established for the analysis of LV systolic function, in order to validate the method in this population. Methods: Seventy-one patients with severe DCM (53 +/- 12 years, 72% men) and 20 controls (30 +/- 8 years, 45% men) were studied. The following variables were studied: LV volumes and ejection fraction calculated by two and three-dimensional echocardiography, Doppler parameters, Tissue Doppler Imaging systolic and diastolic LV velocities and GS obtained by STE. Results: Compared with controls, LV volumes were higher in the DCM group; however, LVEF and peak E-wave velocity were lower in the latter. The myocardial performance index was higher in the patient group. Tissue Doppler myocardial velocities (S', e', a') were significantly lower and E/e' ratio was higher in the DCM group. GS was decreased in the DCM group (-5.5% +/- 2.3%) when compared with controls (-14.0% +/- 1.8%). Conclusion: In this study, GS was significantly lower in patients with severe DCM, bringing new perspectives for therapeutic approaches in this specific population. (Arq Bras Cardiol 2012;99(3):834-842)
Resumo:
Objectives: To integrate data from two-dimensional echocardiography (2D ECHO), three-dimensional echocardiography (3D ECHO), and tissue Doppler imaging (TDI) for prediction of left ventricular (LV) reverse remodeling (LVRR) after cardiac resynchronization therapy (CRT). It was also compared the evaluation of cardiac dyssynchrony by TDI and 3D ECHO. Methods: Twenty-four consecutive patients with heart failure, sinus rhythm, QRS = 120 msec, functional class III or IV and LV ejection fraction (LVEF) = 0.35 underwent CRT. 2D ECHO, 3D ECHO with systolic dyssynchrony index (SDI) analysis, and TDI were performed before, 3 and 6 months after CRT. Cardiac dyssynchrony analyses by TDI and SDI were compared with the Pearson's correlation test. Before CRT, a univariate analysis of baseline characteristics was performed for the construction of a logistic regression model to identify the best predictors of LVRR. Results: After 3 months of CRT, there was a moderate correlation between TDI and SDI (r = 0.52). At other time points, there was no strong correlation. Nine of twenty-four (38%) patients presented with LVRR 6 months after CRT. After logistic regression analysis, SDI (SDI > 11%) was the only independent factor in the prediction of LVRR 6 months of CRT (sensitivity = 0.89 and specificity = 0.73). After construction of receiver operator characteristic (ROC) curves, an equation was established to predict LVRR: LVRR =-0.4LVDD (mm) + 0.5LVEF (%) + 1.1SDI (%), with responders presenting values >0 (sensitivity = 0.67 and specificity = 0.87). Conclusions: In this study, there was no strong correlation between TDI and SDI. An equation is proposed for the prediction of LVRR after CRT. Although larger trials are needed to validate these findings, this equation may be useful to candidates for CRT. (Echocardiography 2012;29:678-687)
Resumo:
The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10-14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.
Resumo:
Recurrent pregnancy loss (RPL) is a multifactorial condition. The effect of antithrombin (SERPINC1), protein C (PROC), thrombomodulin (THBD) and tissue factor pathway inhibitor (TFPI) single nucleotide polymorphisms (SNPs) on the risk of RPL is thus far unknown. Our objective was to determine the association of SNPs in the above mentioned genes with RPL. We included 117 non-pregnant women with three or more consecutive losses prior to 20 weeks of pregnancy without a previous history of carrying a fetus to viability, and 264 healthy fertile non-pregnant women who had at least two term deliveries and no known pregnancy losses. The PROC (rs1799809 and rs1799808), SERPINC1 (rs2227589), THBD (rs1042579) and TFPI (rs10931292, rs8176592 and rs10153820) SNPs were analysed by Real Time PCR. Genotype frequencies for PROC 2418A > G, PROC 2405C > T, THBD 1418C > T, TFPI (T-33C and TFPI C-399T) SNPs were similar in cases and controls. The carriers of SERPINC1 786A allele (GA + AA genotypes) had an increased risk for RPL (odds ratio [OR]: 1.77, 95% confidence interval [CI]: 1.05-3.00, p=0.034) while women carrying the TFPI-287C allele (TC + CC genotypes) had a protection effect on having RPL (OR: 0.46, 95% CI: 0.26 - 0.83, p=0.009). The TCC haplotype for TFPI T-33C/TFPI T-287C/TFPI C-399T SNPs was less frequent in cases (5.7%) than in controls (11.6%) (OR: 0.45, 95% CI: 0.23 - 0.90, p=0.025). In conclusion, our data indicate that SERPINC1 786G > A variant increases the risk for RPL, while TFPI T-287C variant is protective; however, further studies are required to confirm our findings.
Resumo:
The ability of nanoassisted laser desorption-ionization mass spectrometry (NALDI-MS) imaging to provide selective chemical monitoring with proper spatial distribution of lipid profiles from tumor tissues after plate imprinting has been tested. NALDI-MS imaging identified and mapped several potential lipid biomarkers in a murine model of melanoma tumor (inoculation of B16/F10 cells). It also confirmed that the in vivo treatment of tumor bearing mice with synthetic supplement containing phosphoethanolamine (PHO-S) promoted an accentuated decrease in relative abundance of the tumor biomarkers. NALDI-MS imaging is a matrix-free LDI protocol based on the selective imprinting of lipids in the NALDI plate followed by the removal of the tissue. It therefore provides good quality and selective chemical images with preservation of spatial distribution and less interference from tissue material. The test case described herein illustrates the potential of chemically selective NALDI-MS imaging for biomarker discovery.
Resumo:
Our goal was to demonstrate the in vivo tumor specific accumulation of crotamine, a natural peptide from the venom of the South American rattlesnake Crotalus durissus terrificus, which has been characterized by our group as a cell penetrating peptide with a high specificity for actively proliferating cells and with a concentration-dependent cytotoxic effect. Crotamine cytotoxicity has been shown to be dependent on the disruption of lysosomes and subsequent activation of intracellular proteases. In this work, we show that the cytotoxic effect of crotamine also involves rapid intracellular calcium release and loss of mitochondrial membrane potential as observed in real time by confocal microscopy. The intracellular calcium overload induced by crotamine was almost completely blocked by thapsigargin. Microfluorimetry assays confirmed the importance of internal organelles, such as lysosomes and the endoplasmic reticulum, as contributors for the intracellular calcium increase, as well as the extracellular medium. Finally, we demonstrate here that crotamine injected intraperitoneally can efficiently target remote subcutaneous tumors engrafted in nude mice, as demonstrated by a noninvasive optical imaging procedure that permits in vivo real-time monitoring of crotamine uptake into tumor tissue. Taken together, our data indicate that the cytotoxic peptide crotamine can be used potentially for a dual purpose: to target and detect growing tumor tissues and to selectively trigger tumor cell death.
Resumo:
Facial reconstruction is a method that seeks to recreate a person's facial appearance from his/her skull. This technique can be the last resource used in a forensic investigation, when identification techniques such as DNA analysis, dental records, fingerprints and radiographic comparison cannot be used to identify a body or skeletal remains. To perform facial reconstruction, the data of facial soft tissue thickness are necessary. Scientific literature has described differences in the thickness of facial soft tissue between ethnic groups. There are different databases of soft tissue thickness published in the scientific literature. There are no literature records of facial reconstruction works carried out with data of soft tissues obtained from samples of Brazilian subjects. There are also no reports of digital forensic facial reconstruction performed in Brazil. There are two databases of soft tissue thickness published for the Brazilian population: one obtained from measurements performed in fresh cadavers (fresh cadavers' pattern), and another from measurements using magnetic resonance imaging (Magnetic Resonance pattern). This study aims to perform three different characterized digital forensic facial reconstructions (with hair, eyelashes and eyebrows) of a Brazilian subject (based on an international pattern and two Brazilian patterns for soft facial tissue thickness), and evaluate the digital forensic facial reconstructions comparing them to photos of the individual and other nine subjects. The DICOM data of the Computed Tomography (CT) donated by a volunteer were converted into stereolitography (STL) files and used for the creation of the digital facial reconstructions. Once the three reconstructions were performed, they were compared to photographs of the subject who had the face reconstructed and nine other subjects. Thirty examiners participated in this recognition process. The target subject was recognized by 26.67% of the examiners in the reconstruction performed with the Brazilian Magnetic Resonance Pattern, 23.33% in the reconstruction performed with the Brazilian Fresh Cadavers Pattern and 20.00% in the reconstruction performed with the International Pattern, in which the target-subject was the most recognized subject in the first two patterns. The rate of correct recognitions of the target subject indicate that the digital forensic facial reconstruction, conducted with parameters used in this study, may be a useful tool. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.
Resumo:
Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.