17 resultados para Teorema Egregium de Gauss
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Gumbel distribution is perhaps the most widely applied statistical distribution for problems in engineering. We propose a generalization-referred to as the Kumaraswamy Gumbel distribution-and provide a comprehensive treatment of its structural properties. We obtain the analytical shapes of the density and hazard rate functions. We calculate explicit expressions for the moments and generating function. The variation of the skewness and kurtosis measures is examined and the asymptotic distribution of the extreme values is investigated. Explicit expressions are also derived for the moments of order statistics. The methods of maximum likelihood and parametric bootstrap and a Bayesian procedure are proposed for estimating the model parameters. We obtain the expected information matrix. An application of the new model to a real dataset illustrates the potentiality of the proposed model. Two bivariate generalizations of the model are proposed.
Resumo:
The Conway-Maxwell Poisson (COMP) distribution as an extension of the Poisson distribution is a popular model for analyzing counting data. For the first time, we introduce a new three parameter distribution, so-called the exponential-Conway-Maxwell Poisson (ECOMP) distribution, that contains as sub-models the exponential-geometric and exponential-Poisson distributions proposed by Adamidis and Loukas (Stat Probab Lett 39:35-42, 1998) and KuAY (Comput Stat Data Anal 51:4497-4509, 2007), respectively. The new density function can be expressed as a mixture of exponential density functions. Expansions for moments, moment generating function and some statistical measures are provided. The density function of the order statistics can also be expressed as a mixture of exponential densities. We derive two formulae for the moments of order statistics. The elements of the observed information matrix are provided. Two applications illustrate the usefulness of the new distribution to analyze positive data.
Resumo:
The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.
Resumo:
Ng and Kotz (1995) introduced a distribution that provides greater flexibility to extremes. We define and study a new class of distributions called the Kummer beta generalized family to extend the normal, Weibull, gamma and Gumbel distributions, among several other well-known distributions. Some special models are discussed. The ordinary moments of any distribution in the new family can be expressed as linear functions of probability weighted moments of the baseline distribution. We examine the asymptotic distributions of the extreme values. We derive the density function of the order statistics, mean absolute deviations and entropies. We use maximum likelihood estimation to fit the distributions in the new class and illustrate its potentiality with an application to a real data set.
Resumo:
We introduce a five-parameter continuous model, called the McDonald inverted beta distribution, to extend the two-parameter inverted beta distribution and provide new four- and three-parameter sub-models. We give a mathematical treatment of the new distribution including expansions for the density function, moments, generating and quantile functions, mean deviations, entropy and reliability. The model parameters are estimated by maximum likelihood and the observed information matrix is derived. An application of the new model to real data shows that it can give consistently a better fit than other important lifetime models. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
For any continuous baseline G distribution [G. M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Statist. Comput. Simul. 81 (2011), pp. 883-898], proposed a new generalized distribution (denoted here with the prefix 'Kw-G'(Kumaraswamy-G)) with two extra positive parameters. They studied some of its mathematical properties and presented special sub-models. We derive a simple representation for the Kw-Gdensity function as a linear combination of exponentiated-G distributions. Some new distributions are proposed as sub-models of this family, for example, the Kw-Chen [Z.A. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000), pp. 155-161], Kw-XTG [M. Xie, Y. Tang, and T.N. Goh, A modified Weibull extension with bathtub failure rate function, Reliab. Eng. System Safety 76 (2002), pp. 279-285] and Kw-Flexible Weibull [M. Bebbington, C. D. Lai, and R. Zitikis, A flexible Weibull extension, Reliab. Eng. System Safety 92 (2007), pp. 719-726]. New properties of the Kw-G distribution are derived which include asymptotes, shapes, moments, moment generating function, mean deviations, Bonferroni and Lorenz curves, reliability, Renyi entropy and Shannon entropy. New properties of the order statistics are investigated. We discuss the estimation of the parameters by maximum likelihood. We provide two applications to real data sets and discuss a bivariate extension of the Kw-G distribution.
Resumo:
This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we study complete maximal spacelike hypersurfaces in anti-de Sitter space H-1(n+1) with either constant scalar curvature or constant non-zero Gauss-Kronecker curvature. We characterize the hyperbolic cylinders H-m(c(1)) x Hn-m(c(2)), 1 <= m <= n - 1, as the only such hypersurfaces with (n - 1) principal curvatures with the same sign everywhere. In particular we prove that a complete maximal spacelike hypersurface in H-1(5) with negative constant Gauss-Kronecker curvature is isometric to H-1(c(1)) x H-3(c(2)). (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Lemonte and Cordeiro [Birnbaum-Saunders nonlinear regression models, Comput. Stat. Data Anal. 53 (2009), pp. 4441-4452] introduced a class of Birnbaum-Saunders (BS) nonlinear regression models potentially useful in lifetime data analysis. We give a general matrix Bartlett correction formula to improve the likelihood ratio (LR) tests in these models. The formula is simple enough to be used analytically to obtain several closed-form expressions in special cases. Our results generalize those in Lemonte et al. [Improved likelihood inference in Birnbaum-Saunders regressions, Comput. Stat. DataAnal. 54 (2010), pp. 1307-1316], which hold only for the BS linear regression models. We consider Monte Carlo simulations to show that the corrected tests work better than the usual LR tests.
Resumo:
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827-842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data.
Resumo:
In this article, for the first time, we propose the negative binomial-beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.
Resumo:
We study a five-parameter lifetime distribution called the McDonald extended exponential model to generalize the exponential, generalized exponential, Kumaraswamy exponential and beta exponential distributions, among others. We obtain explicit expressions for the moments and incomplete moments, quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and Gini concentration index. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The applicability of the new model is illustrated by means of a real data set.
Resumo:
A rigorous asymptotic theory for Wald residuals in generalized linear models is not yet available. The authors provide matrix formulae of order O(n(-1)), where n is the sample size, for the first two moments of these residuals. The formulae can be applied to many regression models widely used in practice. The authors suggest adjusted Wald residuals to these models with approximately zero mean and unit variance. The expressions were used to analyze a real dataset. Some simulation results indicate that the adjusted Wald residuals are better approximated by the standard normal distribution than the Wald residuals.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the numerical analysis of saturated porous media, taking into account the damage phenomena on the solid skeleton. The porous media is taken into poro-elastic framework, in full-saturated condition, based on Biot's Theory. A scalar damage model is assumed for this analysis. An implicit boundary element method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and two-dimensional elastostatic problems. The integration over boundary elements is evaluated using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry out the relevant domain integrals. The non-linear problem is solved by a Newton-Raphson procedure. Numerical examples are presented, in order to validate the implemented formulation and to illustrate its efficacy. (C) 2011 Elsevier Ltd. All rights reserved.