30 resultados para Tendon repair
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
No tratamento de lesões tendíneas, o uso do ultrassom surge como possibilidade terapêutica, apesar de lacunas sobre seus efeitos clínicos. O objetivo foi avaliar dois protocolos de ultrassom terapêutico sobre dor e edema após trauma tendíneo. Vinte e um ratos Wistar foram submetidos a trauma no tendão calcâneo e divididos em três grupos: sham (GS); ultrassom contínuo (GUC); e ultrassom pulsado (GUP). O trauma ocorreu sobre a face lateral do tendão calcâneo direito, com energia de 0,40 J. A dor foi avaliada pelo teste de incapacidade funcional e o edema, pelo diâmetro laterolateral. Foram realizadas avaliações previamente à lesão; após 1 hora da indução da lesão; após o 1º tratamento; 2, 8 e 24 horas após lesão; e após o 5º dia. O tratamento ocorreu em 5 dias, com transdutor de 1 MHz, durante 3 minutos, sobre o local do trauma, com dose de 0,4 W/cm² SATA. Os resultados da incapacidade funcional para GS mostraram aumento da nocicepção. Para GUC houve aumento ao comparar a avaliação 1 (AV1) com as avaliações 2 (AV2), 3 (AV3) e 4 (AV4); ao comparar AV2 com as avaliações 5 (AV5) e 6 (AV6) houve diminuição de valores. Para GUP houve aumento ao comparar AV1 com AV2 e AV3, mas ao comparar AV2 com as seguintes, houve diminuição significativa a partir de AV4. Para o edema, os grupos tratados produziram aumento inicial, com redução nas últimas avaliações. O ultrassom terapêutico produziu diminuição de dor e edema, mais precocemente para a forma pulsada.
Resumo:
The aim of this controlled animal study was to investigate the effect of low-level laser therapy (LLLT) administered 30 min after injury to the Achilles tendon. The study animals comprised 16 Sprague Dawley male rats divided in two groups. The right Achilles tendons were injured by blunt trauma using a mini guillotine, and were treated with LLLT or placebo LLLT 30 min later. The injury and LLLT procedures were then repeated 15 hours later on the same tendon. One group received active LLLT (lambda = 904 nm, 60 mW mean output power, 0.158 W/cm(2) for 50 s, energy 3 J) and the other group received placebo LLLT 23 hours after LLLT. Ultrasonographic images were taken to measure the thickness of the right and left Achilles tendons. Animals were then killed, and all Achilles tendons were tested for ultimate tensile strength (UTS). All analyses were performed by blinded observers. There was a significant increase in tendon thickness in the active LLLT group when compared with the placebo group (p < 0.05) and there were no significant differences between the placebo and uninjured left tendons. There were no significant differences in UTS between laser-treated, placebo-treated and uninjured tendons. Laser irradiation of the Achilles tendon at 0.158 W/cm(2) for 50 s (3 J) administered within the first 30 min after blunt trauma, and repeated after 15 h, appears to lead to edema of the tendon measured 23 hours after LLLT. The guillotine blunt trauma model seems suitable for inflicting tendon injury and measuring the effects of treatment on edema by ultrasonography and UTS. More studies are needed to further refine this model.
Resumo:
Background: The patellar tendon has limited ability to heal after harvesting its central third. Platelet-rich plasma (PRP) could improve patellar tendon healing. Hypothesis: Adding PRP to the patellar tendon harvest site would improve donor site healing and improve clinical outcome at 6 months after anterior cruciate ligament (ACL) reconstruction with a patellar tendon graft. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: Twenty-seven patients were randomly divided to receive (n = 12) or not receive (n = 15) PRP in the patellar tendon harvest site during ACL reconstruction. The primary outcome was magnetic resonance imaging (MRI) assessment of patellar tendon healing (gap area) after 6 months. Secondary outcomes were questionnaires and isokinetic testing of ACL reconstruction with a patellar tendon graft comparing both groups. Results: Patellar tendon gap area was significantly smaller in the PRP group (4.9 +/- 5.3 mm(2); 95% confidence interval [CI], 1.1-8.8) than in the control group (9.4 +/- 4.4 mm(2); 95% CI, 6.6-12.2; P = .046). Visual analog scale score for pain was lower in the PRP group immediately postoperatively (3.8 +/- 1.0; 95% CI, 3.18-4.49) than in the control group (5.1 +/- 1.4; 95% CI, 4.24-5.90; P = .02). There were no differences after 6 months in questionnaire and isokinetic testing results comparing both groups. Conclusion: We showed that PRP had a positive effect on patellar tendon harvest site healing on MRI after 6 months and also reduced pain in the immediate postoperative period. Questionnaire and isokinetic testing results were not different between the groups at 6 months.
Resumo:
Introduction: The purpose of this research was to study the influence of soft laser treatment on the process of bone repair after expansion of the midpalatal suture. Methods: The sample for this case-control experimental study was 11 dogs. They were randomly divided into 2 groups, both of which underwent rapid maxillary expansion with a hyrax appliance. The animals in group 1 were also treated with laser therapy. They were killed, and histologic specimens of the palatal suture were prepared. The Student t test was applied for independent data, and the Mann-Whitney test was used for nonparametric data. Results: A significant difference was observed in the quality of the palatal sutures between the animals in groups 1 and 2. The connective tissues of the sutures in the group 1 animals were similar to the original configurations, with more advanced osteogenesis and fibrogenesis, compared with those of group 2. Conclusions: Soft laser appears to influence the behavior of the repair process, contributing to suture reorganization and palatal bone osteogenesis during and after expansion. (Am J Orthod Dentofacial Orthop 2012; 142: 615-24)
Resumo:
Background: Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Methods: Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Results: Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of >= 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). Conclusions: The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.
Resumo:
Human cells are constantly exposed to DNA damage. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum (XP), ataxia-telangiectasia (AT) and Fanconi anemia (FA). This review focuses on the historical discoveries related with these three diseases and describes their impact on the understanding of DNA repair mechanisms and the causes of human cancer. As deficiencies in DNA repair are also often related with progeria symptoms, unrepaired damage and aging are somehow related. Several other pathologies associated with DNA repair defects, genetic instability and increased cancer risk are also discussed. In fact, studies with cells from these many syndromes have helped in understanding important levels of protection against cancer and aging, although little help has actually been conferred to the patients in terms of therapy. Finally, the recent advances in combined basic and translational research on DNA repair and chemotherapy are presented.
Resumo:
Objective: Optimal surgical treatment of patients with transposition of the great arteries (TGA), ventricular septal defect (VSD), and pulmonary stenosis (PS) remains a matter of debate. This study evaluated the clinical outcome and right ventricle outflow tract performance in the long-term follow-up of patients subjected to pulmonary root translocation (PRT) as part of their surgical repair. Methods: From April 1994 to December 2010, we operated on 44 consecutive patients (median age, 11 months). All had malposition of the great arteries as follows: TGA with VSD and PS (n = 33); double-outlet right ventricle with subpulmonary VSD (n = 7); double-outlet right ventricle with atrioventricular septal defect (n = 1); and congenitally corrected TGA with VSD and PS (n 3). The surgical technique consisted of PRT from the left ventricle to the right ventricle after construction of an intraventricular tunnel that diverted blood flow from the left ventricle to the aorta. Results: The mean follow-up time was 72 +/- 52.1 months. There were 3 (6.8%) early deaths and 1 (2.3%) late death. Kaplan-Meier survival was 92.8% and reintervention-free survival was 82.9% at 12 years. Repeat echocardiographic data showed nonlinear growth of the pulmonary root and good performance of the valve at 10 years. Only 4 patients required reinterventions owing to right ventricular outflow tract problems. Conclusions: PRT is a good surgical alternative for treatment of patients with TGA complexes, VSD, and PS, with acceptable operative risk, high long-term survivals, and few reinterventions. Most patients had adequate pulmonary root growth and performance. (J Thorac Cardiovasc Surg 2012;143:1292-8)
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
The concept behind a biodegradable ligament device is to temporarily replace the biomechanical functions of the ruptured ligament, while it progressively regenerates its capacities. However, there is a lack of methods to predict the mechanical behaviour evolution of the biodegradable devices during degradation, which is an important aspect of the project. In this work, a hyper elastic constitutive model will be used to predict the mechanical behaviour of a biodegradable rope made of aliphatic polyesters. A numerical approach using ABAQUS is presented, where the material parameters of the model proposal are automatically updated in correspondence to the degradation time, by means of a script in PYTHON. In this method we also use a User Material subroutine (UMAT) to apply a failure criterion base on the strength that decreases according to a first order differential equation. The parameterization of the material model proposal for different degradation times were achieved by fitting the theoretical curves with the experimental data of tensile tests on fibres. To model all the rope behaviour we had considered one step of homogenisation considering the fibres architectures in an elementary volume. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the Sao Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.
Resumo:
Doxorubicin (DOX) is an important tumor chemotherapeutic agent, acting mainly by genotoxic action. This work focus on cell processes that help cell survival, after DOX-induced DNA damage. In fact, cells deficient for XPA or DNA polymerase eta (pol eta, XPV) proteins (involved in distinct DNA repair pathways) are highly DOX-sensitive. Moreover, LY294002, an inhibitor of PIKK kinases, showed a synergistic killing effect in cells deficient in these proteins, with a strong induction of G2/M cell cycle arrest. Taken together, these results indicate that XPA and pol eta proteins participate in cell resistance to DOX-treatment, and kinase inhibitors can selectively enhance its killing effects, probably reducing the cell ability to recover from breaks induced in DNA. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The objective of this study was to compare the bone repair along a mandibular body osteotomy stabilized with 2.0 mm absorbable and metallic systems. 12 male, adult mongrel dogs were divided into two groups (metallic and absorbable) and subjected to unilateral osteotomy between the mandibular third and fourth premolars, which was stabilized by applying two 4-hole plates. At 2 and 18 weeks, three dogs from each group were killed and the osteotomy sites were removed and divided equally into three parts: the upper part was labelled the tension third (TT), the lower part the compression third (CT), and the part between the TT and CT the intermediary third (IT). Regardless of the treatment system, union between the fragments was observed at 18 weeks and the CT showed more advanced stages of bone repair than the TT. Histometric analysis did not reveal any significant differences among the 3 parts or systems in the distance between bone fragments at 2 weeks. Although at 18 weeks the proportions of newly formed bone did not differ among TT, IT and CT, significantly enhanced bone formation was observed in all sections for the metallic group. The patterns of repair were distinct between treatments.
Resumo:
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transposase nuclease domain of Metnase. We identified eight compounds as possible Metnase inhibitors. Interestingly, among these candidate inhibitors were quinolone antibiotics and HIV integrase inhibitors, which share common structural features. Previous reports have described possible activity of quinolones as antineoplastic agents. Therefore, we chose the quinolone ciprofloxacin for further study, based on its wide clinical availability and low toxicity. We found that ciprofloxacin inhibits the ability of Metnase to cleave DNA and inhibits Metnase-dependent DNA repair. Ciprofloxacin on its own did not induce DNA damage, but it did reduce repair of chemotherapy-induced DNA damage. Ciprofloxacin increased the sensitivity of cancer cell lines and a xenograft tumor model to clinically relevant chemotherapy. These studies provide a mechanism for the previously postulated antineoplastic activity of quinolones, and suggest that ciprofloxacin might be a simple yet effective adjunct to cancer chemotherapy. Cancer Res; 72(23); 6200-8. (C) 2012 AACR.