2 resultados para Taylor and Forsyth

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.